版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题7.1平行线的判定【七大题型】【苏科版】TOC\o"1-3"\h\u【题型1平行公理及其推论】 1【题型2同位角相等,两直线平行】 2【题型3内错角相等,两直线平行】 4【题型4同旁内角互补,两直线平行】 5【题型5平行线的判定方法的综合运用】 6【题型6角平分线与平行线的判定综合运用】 7【题型7平行线判定的实际应用】 9【知识点平行线的判定】1.平行公理及其推论①经过直线外一点,有且只有一条直线与已知直线平行.②如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.平行线的判定方法①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(同位角相等,两直线平行).②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(内错角相等,两直线平行.③两直线被第三条直线所截,如果同旁内角互补,则这两条直线平行.(同旁内角互补,两直线平行.)【题型1平行公理及其推论】【例1】(2022·江西上饶·七年级期中)同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(
)A.a∥d B.b⊥d C.a⊥d 【变式1-1】(2022·河南漯河·七年级期末)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是(
)A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【变式1-2】(2022·湖北武汉·七年级期中)下列命题:①内错角相等;②两个锐角的和是钝角;③a,b,c是同一平面内的三条直线,若a//b,b//c,则a//c;④a,b,c是同一平面内的三条直线,若ab,bc,则ac;其中真命题的个数是(
)A.1个 B.2个 C.3个 D.4个【变式1-3】(2022·四川·甘孜藏族自治州教育局七年级期末)如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为所以____________∥___________.(
)又因为AB∥所以AB∥EF.(【题型2同位角相等,两直线平行】【例2】(2022·甘肃·陇南育才学校七年级期末)如图,AB⊥MN,垂足为B,CD⊥MN,垂足为D,∠1=∠2.在下面括号中填上理由.因为AB⊥MN,CD⊥MN,所以∠ABM=∠CDM=90°.又因为∠1=∠2(),所以∠ABM−∠1=∠CDM−∠2(),即∠EBM=∠FDM.所以EB∥【变式2-1】(2022·湖北·蕲春县向桥乡白水中学七年级阶段练习)如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是______.【变式2-2】(2022·山东泰安·七年级期末)如图,AB⊥BC,∠1+∠2=90°,∠2=∠3.请说明线段BE与DF的位置关系?为什么?【变式2-3】(2022·北京东城·七年级期末)如图,直线l与直线AB,CD分别交于点E,F,∠1是它的补角的3倍,∠1−∠2=90°.判断AB与CD的位置关系,并说明理由.【题型3内错角相等,两直线平行】【例3】(2022·山东·曲阜九巨龙学校七年级阶段练习)如图,点A在直线DE上,AB⊥AC于A,∠1与∠C互余,DE和BC平行吗?若平行,请说明理由.【变式3-1】(2022·北京市房山区燕山教委八年级期中)如图,已知∠1=75°,∠2=35°,∠3=40°,求证:a∥b.【变式3-2】(2022·福建·莆田第二十五中学八年级阶段练习)如图,CF是△ABC外角∠ACM的平分线,∠ACB=40°,【变式3-3】(2022·辽宁·阜新市第十中学七年级期中)如图,AB∥DE,∠1=∠ACB,∠CAB=12∠BAD,试说明AD∥BC【题型4同旁内角互补,两直线平行】【例4】(2022·河北衡水·七年级阶段练习)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥【变式4-1】(2022·西藏昂仁县中学七年级期中)如图,∠CAD=20°,∠B=70°,AB⊥AC,求证:AD∥BC.【变式4-2】(2022·甘肃·平凉市第七中学七年级期中)如图,∠1=30°,∠B=60°,AB⊥AC.(1)∠DAB+∠B等于多少度?(2)AD与BC平行吗?请说明理由.【变式4-3】(2022·北京市第五中学分校七年级期末)如图,已知点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D,F,点M,G在AB上,GF交BD于点H,∠BMD+∠ABC=180°,∠1=∠2,求证:MD∥GF.下面是小颖同学的思考过程,请补全证明过程并在括号内填上证明依据.证明:∵BD⊥AC,EF⊥AC,∴∠BDC=90°,∠EFC=90°(①).∴∠BDC=∠EFC(等量代换).∴BD∥EF(同位角相等,两直线平行).∴∠2=∠CBD(②).∵∠1=∠2(已知).∴∠1=∠CBD(等量代换).∴③(内错角相等,两直线平行).∵∠BMD+∠ABC=180°(已知),∴MD∥BC(④).∴MD∥GF(⑤).【题型5平行线的判定方法的综合运用】【例5】(2022·广西贺州·七年级期末)如图,有下列条件:①∠1=∠2;②∠3+∠4=180°;③∠5+∠6=180°;④∠2=∠3.其中,能判断直线a∥A.4个 B.3个 C.2个 D.1个【变式5-1】(2022·浙江台州·七年级期末)在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,不能判断两条直轨是否平行(
)A.∠1 B.∠3 C.∠4 D.∠5【变式5-2】(2022·山西临汾·七年级期末)在下列图形中,已知∠1=∠2,一定能推导出l1∥lA. B. C. D.【变式5-3】(2022·山东日照·七年级期末)如图,在下列给出的条件中,不能判定DE∥BC的是(A.∠1=∠2 B.∠3=∠4 C.∠5=∠C D.∠B+∠BDE=180°【题型6角平分线与平行线的判定综合运用】【例6】(2022·吉林·大安市乐胜乡中学校七年级阶段练习)如图,在四边形ABCD中,∠ADC+∠ABC=180°,∠ADF+∠AFD=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ADC,判断BE、DF是否平行,并说明理由.【变式6-1】(2022·江苏·扬州市邗江区实验学校七年级期末)将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥证明:∵CE平分∠ACD(已知),∴∠2=∠().∵∠1=∠2(已知),∴∠1=∠().∴AB∥CD(【变式6-2】(2022·辽宁沈阳·七年级期末)按逻辑填写步骤和理由,将下面的证明过程补充完整如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.求证:BE∥CF.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∠BFG=∠2(____________)∴∠ABF=______(等量代换)∵BE平分∠ABF(已知)∴∠EBF=1∵FC平分∠BFG(已知)∴∠CFB=1∴∠EBF=______∴BE∥CF(____________)【变式6-3】(2022·内蒙古·扎赉特旗音德尔第三中学七年级期末)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC.请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(______),所以∠BAG=∠AGC(______).因为EA平分∠BAG,所以∠1=1因为FG平分∠AGC,所以∠2=1得∠1=∠2(等量代换),所以______(______).【题型7平行线判定的实际应用】【例7】(2022·全国·七年级课时练习)如图,若将木条a绕点O旋转后使其与木条b平行,则旋转的最小角度为()A.65° B.85° C.95° D.115°【变式7-1】(2022·河南·郑州外国语学校经开校区七年级阶段练习)如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2 B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2 D.在图4中,展开后测得∠1+∠2=180°【变式7-2】(2022·全国·七年级)一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是(
)A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.【变式7-3】(2022·江苏·南京外国语学校七年级期中)如图,a、b、c三根木棒钉在一起,∠1=70°,∠2=100°,现将木棒a、b同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a,b平行.专题7.1平行线的判定【七大题型】【苏科版】TOC\o"1-3"\h\u【题型1平行公理及其推论】 1【题型2同位角相等,两直线平行】 4【题型3内错角相等,两直线平行】 6【题型4同旁内角互补,两直线平行】 9【题型5平行线的判定方法的综合运用】 12【题型6角平分线与平行线的判定综合运用】 15【题型7平行线判定的实际应用】 19【知识点平行线的判定】1.平行公理及其推论①经过直线外一点,有且只有一条直线与已知直线平行.②如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.平行线的判定方法①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(同位角相等,两直线平行).②两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(内错角相等,两直线平行.③两直线被第三条直线所截,如果同旁内角互补,则这两条直线平行.(同旁内角互补,两直线平行.)【题型1平行公理及其推论】【例1】(2022·江西上饶·七年级期中)同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是(
)A.a∥d B.b⊥d C.a⊥d 【答案】C【分析】根据同一平面内,垂直于同一条直线的两条直线平行,可证a∥c,再结合c⊥d,可证【详解】解:∵a⊥b,b⊥c,∴a∥∵c⊥d,∴a⊥d,故选:C.【点睛】本题主要考查了平行线及垂线的性质,解题的关键是掌握同一平面内,垂直于同一条直线的两条直线平行.【变式1-1】(2022·河南漯河·七年级期末)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是(
)A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【答案】B【分析】三条直线AB、a、b位于同一平面内,且直线a与直线b都垂直于AB,即可根据在同一平面内,垂直于同一条直线的两条直线互相平行的性质来判断出a∥b.【详解】∵直线AB、a、b位于同一平面内,且AB⊥a、AB⊥b∴a∥b(同一平面内,垂直于同一条直线的两条直线互相平行)故答案为B.【点睛】本题考查了平行线判定的性质,根据已知题目反应出两条直线是同一平面内,且同时垂直于一条直线是本题的关键.【变式1-2】(2022·湖北武汉·七年级期中)下列命题:①内错角相等;②两个锐角的和是钝角;③a,b,c是同一平面内的三条直线,若a//b,b//c,则a//c;④a,b,c是同一平面内的三条直线,若ab,bc,则ac;其中真命题的个数是(
)A.1个 B.2个 C.3个 D.4个【答案】A【分析】根据平行线性质可判断①,根据两锐角的大小求和可判断②,根据平行公理推论可判断③,根据垂直定义得出∠1=∠2=90°,然后利用同位角相等,两直线平行的判定可判断④.【详解】解:①两直线平行,内错角相等,故①不正确;②两个锐角的和可以是锐角,直角,钝角,故②不正确;③a,b,c是同一平面内的三条直线,若a//b,b//c,则a//c,故③正确;④a,b,c是同一平面内的三条直线,如图∵ab,bc,∴∠1=90°,∠2=90°,∴∠1=∠2∴a∥c,故④不正确;∴真命题只有1个.故选A.【点睛】本题考查平行线的性质与判定,两锐角和的大小,掌握平行线的性质与判定,锐角定义是解题关键.【变式1-3】(2022·四川·甘孜藏族自治州教育局七年级期末)如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为所以____________∥___________.(
)又因为AB∥所以AB∥EF.(【答案】CD∥EF;内错角相等,两直线平行;平行于同一直线的两条直线平行【分析】根据平行线的判定定理完成填空即可求解.【详解】解:因为∠1=∠2,所以CD∥EF.(内错角相等,两直线平行)又因为AB∥所以AB∥【点睛】本题考查了平行线的判定,平行公理,掌握平行线的判定定理是解题的关键.【题型2同位角相等,两直线平行】【例2】(2022·甘肃·陇南育才学校七年级期末)如图,AB⊥MN,垂足为B,CD⊥MN,垂足为D,∠1=∠2.在下面括号中填上理由.因为AB⊥MN,CD⊥MN,所以∠ABM=∠CDM=90°.又因为∠1=∠2(),所以∠ABM−∠1=∠CDM−∠2(),即∠EBM=∠FDM.所以EB∥【答案】
已知
等量减等量,差相等
同位角相等,两直线平行【分析】根据垂线的定义,得出∠ABM=∠CDM=90°,再根据角的等量关系,得出∠EBM=∠FDM,然后再根据同位角相等,两直线平行,得出EB∥【详解】因为AB⊥MN,CD⊥MN,所以∠ABM=∠CDM=90°.又因为∠1=∠2(已知),所以∠ABM−∠1=∠CDM−∠2(等量减等量,差相等),即∠EBM=∠FDM.所以EB∥【点睛】本题考查了垂线的定义、平行线的判定,解本题的关键在熟练掌握平行线的判定定理.【变式2-1】(2022·湖北·蕲春县向桥乡白水中学七年级阶段练习)如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是______.【答案】同位角相等,两直线平行【分析】作图时保持∠1=∠2,根据同位角相等,两直线平行即可画出已知直线的平行线.【详解】解:过直线外一点画已知直线的平行线的方法叫“推平行线”法,其依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定和性质,平行公理,解决本题的关键是掌握平行线的判定和性质.【变式2-2】(2022·山东泰安·七年级期末)如图,AB⊥BC,∠1+∠2=90°,∠2=∠3.请说明线段BE与DF的位置关系?为什么?【答案】BE∥DF,见解析【分析】由已知推出∠3+∠4=90°,利用∠1+∠2=90°,∠2=∠3,得到∠1=∠4,即可得到结论BE∥DF.【详解】解:BE∥DF,∵AB⊥BC,∴∠ABC=90°,∴∠3+∠4=90°,∵∠1+∠2=90°,∠2=∠3,∴∠1=∠4,∴BE∥DF.【点睛】此题考查了平行线的判定定理,熟记平行线的判定定理并熟练应用是解题的关键.【变式2-3】(2022·北京东城·七年级期末)如图,直线l与直线AB,CD分别交于点E,F,∠1是它的补角的3倍,∠1−∠2=90°.判断AB与CD的位置关系,并说明理由.【答案】AB∥CD;理由见解析【分析】先根据补角的定义求出∠1的度数,然后求出∠CFE和∠2的度数,最后根据平行线的判定进行解答即可.【详解】解:AB∥CD;理由如下:∵∠1是它的补角的3倍,∴设∠1=α,则∠1的补角为13∴α+1解得:α=135°,∴∠1=135°,∴∠CFE=180°−∠1=45°,∵∠1−∠2=90°,∴∠2=∠1−90°=45°,∴∠2=∠CFE=45°,∴AB∥CD.【点睛】本题主要考查了补角的有关计算,平行线的判定,根据题意求出∠2=∠CFE=45°,是解题的关键.【题型3内错角相等,两直线平行】【例3】(2022·山东·曲阜九巨龙学校七年级阶段练习)如图,点A在直线DE上,AB⊥AC于A,∠1与∠C互余,DE和BC平行吗?若平行,请说明理由.【答案】平行,理由见解析【分析】由垂直定义可得∠BAC=90°,根据平角定义得∠1+∠BAC+∠CAE=180°,即可得出∠1+∠CAE=90°,由∠1与∠C互余,根据余角的性质即可得出∠CAE=∠C,根据平行线的判定定理即可得出结论.【详解】解:平行,理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1+∠BAC+∠CAE=180°,∴∠1+∠CAE=90°,∵∠1与∠C互余,即∠1+∠C=90°,∴∠CAE=∠C,∴DE∥BC.【点睛】本题考查平行线的判定,余角的性质,熟练掌握平行线的判定定理是解题的关键.【变式3-1】(2022·北京市房山区燕山教委八年级期中)如图,已知∠1=75°,∠2=35°,∠3=40°,求证:a∥b.【答案】见解析【分析】先根据三角形内角和性质,求得∠4=75°,再根据∠1=75°,即可得到∠1=∠4,进而判定a∥【详解】证明:如下图:∵∠4=∠3+∠2=75°,又∵∠1=75°,∴∠1=∠4,∴a∥【点睛】本题主要考查了平行线的判定以及三角形内角和性质,解题时注意:内错角相等,两直线平行.【变式3-2】(2022·福建·莆田第二十五中学八年级阶段练习)如图,CF是△ABC外角∠ACM的平分线,∠ACB=40°,【答案】证明见解析【分析】由角平分线的定义及补角的定义可求得∠ACE的度数,即可得∠【详解】证明:∵∠ACB∴∠ACM∵CF是△ABC外角∠∴∠ACF∵∠A∴∠A∴AB∥【点睛】本题主要考查角平分线的定义、三角形外角的性质和平行线的判定,证得∠A【变式3-3】(2022·辽宁·阜新市第十中学七年级期中)如图,AB∥DE,∠1=∠ACB,∠CAB=12∠BAD,试说明AD∥BC【答案】见解析【分析】根据平行线的性质得∠BAC=∠1,等量代换得∠ACB=∠BAC,根据∠CAB=12∠BAD可得∠ACB【详解】证明:∵AB∥∴∠BAC=∠1,∵∠1=∠ACB,∴∠ACB=∠BAC,∵∠CAB=1∴∠ACB=∠DAC,∴AD∥【点睛】本题考查了平行线的判定与性质,解题的关键是掌握平行线的判定与性质.【题型4同旁内角互补,两直线平行】【例4】(2022·河北衡水·七年级阶段练习)已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥【答案】见解析【分析】根据同旁内角互补,两直线平行,再根据平行于同一条直线的两条直线平行即可证明结论.【详解】证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.【点睛】本题考查了平行线的判定,解决本题的关键是掌握平行线的判定.【变式4-1】(2022·西藏昂仁县中学七年级期中)如图,∠CAD=20°,∠B=70°,AB⊥AC,求证:AD∥BC.【答案】见解析【分析】根据同旁内角互补,两直线平行证明即可.【详解】解:∵AB⊥AC,∴∠BAC=90°,∵∠CAD=20°,∠B=70°,∴∠B+∠BAD=70°+90°+20°=180°,∴AD∥BC.【点睛】本题考查平行线的判定、垂直定义,熟练掌握平行线的判定方法是解答的关键.【变式4-2】(2022·甘肃·平凉市第七中学七年级期中)如图,∠1=30°,∠B=60°,AB⊥AC.(1)∠DAB+∠B等于多少度?(2)AD与BC平行吗?请说明理由.【答案】(1)∠DAB+∠B=180°(2)AD∥BC;理由见解析【分析】(1)由已知可求得∠DAB=120°,从而可求得∠DAB+∠B=180°;(2)根据同旁内角互补两直线平行可得AD∥BC.(1)解:∵AB⊥AC,∴∠BAC=90°.又∵∠1=30°,∴∠BAD=120°,∵∠B=60°,∴∠DAB+∠B=180°.(2)解:AD∥BC.理由如下:∵∠DAB+∠B=180°,∴AD∥BC.【点睛】本题主要考查了平行线的判定,解题的关键是熟练掌握同旁内角互补,两直线平行.【变式4-3】(2022·北京市第五中学分校七年级期末)如图,已知点E在BC上,BD⊥AC,EF⊥AC,垂足分别为D,F,点M,G在AB上,GF交BD于点H,∠BMD+∠ABC=180°,∠1=∠2,求证:MD∥GF.下面是小颖同学的思考过程,请补全证明过程并在括号内填上证明依据.证明:∵BD⊥AC,EF⊥AC,∴∠BDC=90°,∠EFC=90°(①).∴∠BDC=∠EFC(等量代换).∴BD∥EF(同位角相等,两直线平行).∴∠2=∠CBD(②).∵∠1=∠2(已知).∴∠1=∠CBD(等量代换).∴③(内错角相等,两直线平行).∵∠BMD+∠ABC=180°(已知),∴MD∥BC(④).∴MD∥GF(⑤).【答案】垂直的定义;两直线平行,同位角相等;GF∥BC;同旁内角互补,两直线平行;平行于同一直线的两直线平行.【分析】根据垂直定义得出∠BDC=∠EFC,根据平行线的判定推出BD∥EF,根据平行线的性质得出∠CBD=∠2,求出∠CBD=∠1,根据平行线的判定得出GF∥BC,GF∥MD即可.【详解】证明:∵BD⊥AC,EF⊥AC,∴∠BDC=90°,∠EFC=90°(垂直的定义).∴∠BDC=∠EFC(等量代换).∴BD∥EF(同位角相等,两直线平行).∴∠2=∠CBD(两直线平行,同位角相等).∵∠1=∠2(已知).∴∠1=∠CBD(等量代换).∴GF∥BC(内错角相等,两直线平行).∵∠BMD+∠ABC=180°(已知),∴MD∥BC(同旁内角互补,两直线平行).∴MD∥GF(平行于同一直线的两直线平行).故答案为:垂直的定义;两直线平行,同位角相等;GF∥BC;同旁内角互补,两直线平行;平行于同一直线的两直线平行.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.【题型5平行线的判定方法的综合运用】【例5】(2022·广西贺州·七年级期末)如图,有下列条件:①∠1=∠2;②∠3+∠4=180°;③∠5+∠6=180°;④∠2=∠3.其中,能判断直线a∥A.4个 B.3个 C.2个 D.1个【答案】B【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法即可得出结论.【详解】解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;故能判断直线a∥b的有3个,故选:B.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解决问题的关键.【变式5-1】(2022·浙江台州·七年级期末)在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,不能判断两条直轨是否平行(
)A.∠1 B.∠3 C.∠4 D.∠5【答案】A【分析】因为∠2是直角,只要找出与∠2互为同位角、内错角、同旁内角的其他角,根据平行线的判定定理判定即可得到正确答案.【详解】因为∠2是直角,∠4和∠2是同位角,如果度量出∠4=90根据“同位角相等,两直线平行”,就可以判断两条直轨平行,∠5和∠2是内错角,如果度量出∠5=90根据“内错角相等,两直线平行”,就可以判断两条直轨平行,∠3和∠2是同旁内角,如果度量出∠3=90根据“同旁内角互补,两直线平行”,就可以判断两条直轨平行,所以答案为:A.【点睛】本题考查两直线平行的判定定理,解决本题的关键是熟练的掌握平行线的判定定理.【变式5-2】(2022·山西临汾·七年级期末)在下列图形中,已知∠1=∠2,一定能推导出l1∥lA. B. C. D.【答案】D【分析】根据邻补角的定义,对顶角相等和平行线的判定定理即可求解.【详解】解:A.如图,∵∠1=∠2,∠1+∠3=180°,∴∠2+∠3=180°,∴不能推导出l1B.如图,∵∠1=∠2,∠1+∠3=180°,∴∠2+∠3=180°,∴不能推导出l1C.如图,∵∠1=∠2,∠1+∠3=180°,∴∠2+∠3=180°,∴不能推导出l1D.如图,∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴一定能推导出l1故选:D.【点睛】本题考查了平行线的判定,关键是熟悉同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识点.【变式5-3】(2022·山东日照·七年级期末)如图,在下列给出的条件中,不能判定DE∥BC的是(A.∠1=∠2 B.∠3=∠4 C.∠5=∠C D.∠B+∠BDE=180°【答案】B【分析】根据平行线的判定定理逐一判断即可.【详解】因为∠1=∠2,所以DE∥故A不符合题意;因为∠3=∠4,不能判断DE∥故B符合题意;因为∠5=∠C,所以DE∥故C不符合题意;因为∠B+∠BDE=180°,所以DE∥故D不符合题意;故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.【题型6角平分线与平行线的判定综合运用】【例6】(2022·吉林·大安市乐胜乡中学校七年级阶段练习)如图,在四边形ABCD中,∠ADC+∠ABC=180°,∠ADF+∠AFD=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ADC,判断BE、DF是否平行,并说明理由.【答案】平行,理由见解析【分析】先根据角平分线的定义可得∠ABE=12∠ABC,∠ADF=12∠ADC,从而可得【详解】解:BE∥DF,理由如下:∵BE,DF分别平分∠ABC,∠ADC,∴∠ABE=1∵∠ADC+∠ABC=180°,∴∠ADF+∠ABE=1又∵∠ADF+∠AFD=90°,∴∠ABE=∠AFD,∴BE∥DF.【点睛】本题考查了角平分线、平行线的判定,熟练掌握平行线的判定方法是解题关键.【变式6-1】(2022·江苏·扬州市邗江区实验学校七年级期末)将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥证明:∵CE平分∠ACD(已知),∴∠2=∠().∵∠1=∠2(已知),∴∠1=∠().∴AB∥CD(【答案】ECD;角平分线的性质;ECD;等量代换;内错角相等,两直线平行【分析】根据平行线的判定依据角平分线的性质即可解决问题.【详解】证明:∵CE平分∠ACD,∴∠2=∠ECD(角平分线的性质),∵∠1=∠2.(已知),∴∠1=∠ECD(等量代换),∴AB∥CD(内错角相等两直线平行).故答案为:ECD;角平分线的定义;ECD;等量代换;内错角相等,两直线平行.【点睛】本题主要考查平行线的性质和判定和角平分线的性质,解题的关键是根据平行线的判定解答.【变式6-2】(2022·辽宁沈阳·七年级期末)按逻辑填写步骤和理由,将下面的证明过程补充完整如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.求证:BE∥CF.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∠BFG=∠2(____________)∴∠ABF=______(等量代换)∵BE平分∠ABF(已知)∴∠EBF=1∵FC平分∠BFG(已知)∴∠CFB=1∴∠EBF=______∴BE∥CF(____________)【答案】对顶角相等;∠BFG;∠ABF;角平分线的定义;∠BFG;角平分线的定义;∠CFB;内错角相等,两直线平行;【分析】根据对顶角的定义,平行线的判定,角平分线的性质,结合上下文填空即可.【详解】证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∠BFG=∠2(对顶角相等)∴∠ABF=∠BFG(等量代换)∵BE平分∠ABF(已知)∴∠EBF=12∠ABF(∵FC平分∠BFG(已知)∴∠CFB=12∠BFG(∴∠EBF=∠CFB,∴BE∥CF(内错角相等,两直线平行),故答案为:对顶角相等;∠BFG;∠ABF;角平分线的定义;∠BFG;角平分线的定义;∠CFB;内错角相等,两直线平行.【点睛】本题考查对顶角的定义及性质,平行线的判定,角平分线的性质,能够熟练掌握平行线的判定是解决本题的关键.【变式6-3】(2022·内蒙古·扎赉特旗音德尔第三中学七年级期末)如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC.请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(______),所以∠BAG=∠AGC(______).因为EA平分∠BAG,所以∠1=1因为FG平分∠AGC,所以∠2=1得∠1=∠2(等量代换),所以______(______).【答案】平角的定义;同角的补角相等;角平分线的定义;∠AGC;AE∥GF;内错角相等,两直线平行【分析】由题意可求得∠BAG=∠AGC,再由角平分线的定义得∠1=12∠BAG,∠2=12【详解】解:∵∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(平角的定义),∴∠BAG=∠AGC(同角的补角相等).∵EA平分∠BAG,∴∠1=1∵FG平分∠AGC,∴∠2=1∴∠1=∠2(等量代换),∴AE∥GF(内错角相等,两直线平行).故答案为:平角的定义;同角的补角相等;角平分线的定义;∠AGC;AE∥GF;内错角相等,两直线平行.【点睛】本题主要考查角平分线的定义,补角的性质和平行线的判定,解答的关键是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 济宁学院《金融市场学》2021-2022学年第一学期期末试卷
- 二零二四年度新能源汽车生产许可合同
- 2024年班主任家访工作总结
- 全新智能家居系统研发合作合同
- 癫痫的诊断与治疗
- 脉搏的护理操作
- 皮肤伤口护理
- 二零二四年度房屋买卖合同标的房价款和交付时间2篇
- 生态畜牧养殖示范园项目可行性报告 生态畜牧养殖项目实施方案
- 血液病染色体
- DL-T804-2014交流电力系统金属氧化物避雷器使用导则
- 与食品安全相关的组织机构、职能岗位职责 进口食品收货人备案海关
- 2024养猪场买卖合同协议书范本
- 中国肢端肥大症诊治共识(2021版)
- 《5以内的减法》幼儿园数学课件
- 五年级口算1000题(打印版)
- 领导风格与团队绩效的因果关系
- 2.3.2《抛物线的简单几何性质》省公开课一等奖全国示范课微课金奖课件
- 大中小思政课一体化建设的理念与路径
- 附件4 中国教育学会2024年度教育科研课题指南
- 数据治理的数据质量评估模型
评论
0/150
提交评论