中考数学二轮复习考点提分特训专题08 圆与几何综合问题(解析版)_第1页
中考数学二轮复习考点提分特训专题08 圆与几何综合问题(解析版)_第2页
中考数学二轮复习考点提分特训专题08 圆与几何综合问题(解析版)_第3页
中考数学二轮复习考点提分特训专题08 圆与几何综合问题(解析版)_第4页
中考数学二轮复习考点提分特训专题08 圆与几何综合问题(解析版)_第5页
已阅读5页,还剩84页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题08圆与几何综合问题一、【知识回顾】【思维导图】二、【考点类型】考点1:切线的判定典例1:(2023·广西柳州·统考模拟预测)如图,在SKIPIF1<0中,SKIPIF1<0,以SKIPIF1<0为直径的SKIPIF1<0分别交SKIPIF1<0边于点D、F.过点D作SKIPIF1<0于点E(1)求证:SKIPIF1<0是SKIPIF1<0的切线;(2)若SKIPIF1<0半径为5,且SKIPIF1<0,求SKIPIF1<0的长.【答案】(1)见解析(2)2【分析】(1)连接SKIPIF1<0,根据SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,即有SKIPIF1<0,可证SKIPIF1<0,再根据SKIPIF1<0可得SKIPIF1<0,则可得SKIPIF1<0且SKIPIF1<0为SKIPIF1<0的半径,可得SKIPIF1<0是SKIPIF1<0的切线;(2)过点SKIPIF1<0作SKIPIF1<0于点SKIPIF1<0,根据SKIPIF1<0,根据垂径定理可得SKIPIF1<0,又SKIPIF1<0,得四边形SKIPIF1<0为矩形,则有SKIPIF1<0,SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,根据勾股定理求解即可.【详解】(1)证明:连接SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0为SKIPIF1<0的半径.SKIPIF1<0是SKIPIF1<0的切线.(2)过点SKIPIF1<0作SKIPIF1<0于点SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,∴四边形SKIPIF1<0为矩形,

SKIPIF1<0.设SKIPIF1<0,则SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0的长为2.【点睛】本题考查的是切线的判定与性质,垂径定理,矩形的判定与性质,勾股定理等知识点,掌握切线的判定定理、垂径定理是解题的关键.【变式1】(2023秋·河南信阳·九年级统考期末)如图,SKIPIF1<0是⊙O的直径,四边形SKIPIF1<0内接于⊙O,D是SKIPIF1<0的中点,SKIPIF1<0交SKIPIF1<0的延长线于点E.(1)求证:SKIPIF1<0是⊙O的切线;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的长.【答案】(1)见解析(2)1【分析】(1)要证明SKIPIF1<0是⊙O的切线,所以连接SKIPIF1<0,求出SKIPIF1<0即可,根据已知SKIPIF1<0,可得SKIPIF1<0,所以只要证明SKIPIF1<0即可解答;(2)由(1)可得SKIPIF1<0平分SKIPIF1<0,所以想到过点D作SKIPIF1<0,垂足为F,进而证明SKIPIF1<0,可得SKIPIF1<0,易证SKIPIF1<0,可得SKIPIF1<0,然后进行计算即可解答.【详解】(1)证明:连接SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中点,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是⊙O的半径,SKIPIF1<0是⊙O的切线.(2)过点D作SKIPIF1<0,垂足为F,由(1)得:SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0内接于⊙O,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即:SKIPIF1<0.【点睛】本题考查了切线的判定,圆周角定理,圆内接四边形性质,全等三角形的证明,添加辅助线是解题的关键.【变式2】(2021·辽宁锦州·统考中考真题)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.(1)求证:CE为⊙O的切线;(2)若DE=1,CD=3,求⊙O的半径.【答案】(1)见解析;(2)⊙O的半径是4.5【分析】(1)如图1,连接OC,先根据四边形ABCD内接于⊙O,得SKIPIF1<0,再根据等量代换和直角三角形的性质可得SKIPIF1<0,由切线的判定可得结论;(2)如图2,过点O作SKIPIF1<0于G,连接OC,OD,则SKIPIF1<0,先根据三个角是直角的四边形是矩形得四边形OGEC是矩形,设⊙O的半径为x,根据勾股定理列方程可得结论.【详解】(1)证明:如图1,连接OC,∵SKIPIF1<0,∴SKIPIF1<0,∵四边形ABCD内接于⊙O,∴SKIPIF1<0又SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵OC是⊙O的半径,∴CE为⊙O的切线;(2)解:如图2,过点O作SKIPIF1<0于G,连接OC,OD,则SKIPIF1<0,∵SKIPIF1<0,∴四边形OGEC是矩形,∴SKIPIF1<0,设⊙O的半径为x,Rt△CDE中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由勾股定理得SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴⊙O的半径是4.5.【点睛】本题考查的是圆的综合,涉及到圆的切线的证明、勾股定理以及矩形的性质,熟练掌握相关性质是解决问题的关键.【变式3】(2023·四川泸州·统考一模)如图,已知SKIPIF1<0内接于SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直径,SKIPIF1<0的平分线交SKIPIF1<0于点SKIPIF1<0,交SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0,作SKIPIF1<0,SKIPIF1<0交SKIPIF1<0的延长线于点SKIPIF1<0.(1)求证:SKIPIF1<0;(2)求证:SKIPIF1<0是SKIPIF1<0的切线;(3)若SKIPIF1<0,求SKIPIF1<0的半径和SKIPIF1<0的长.【答案】(1)见解析(2)见解析(3)15,SKIPIF1<0【分析】(1)由圆周角定理及已知条件进行等量代换,然后利用内错角相等两直线平行证明即可.(2)利用角平分线及圆周角定理得出SKIPIF1<0是SKIPIF1<0的中点,再利用垂径定理及平行线的性质推导得出SKIPIF1<0为直角,即可证明.(3)先证明SKIPIF1<0,然后利用勾股定理计算得出SKIPIF1<0的长,再利用平行线所截线段成比例求出SKIPIF1<0.【详解】(1)证明:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)证明:连接SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的半径,∴SKIPIF1<0是SKIPIF1<0的切线;(3)解:如图,设SKIPIF1<0的半径为SKIPIF1<0,则SKIPIF1<0,在SKIPIF1<0中,由勾股定理,得SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0的半径为15;∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的直径,∴SKIPIF1<0,在SKIPIF1<0中,由勾股定理,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.方法二:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的半径为15;求SKIPIF1<0长的步骤同上.【点睛】本题主要考查平行的判定,圆周角定理,垂径定理,勾股定理,切线的证明以及相似三角形,掌握切线的证明,相似三角形的判定及计算是解决本题的关键.考点2:与线段有关的问题典例2:(辽宁省大连市金普新区2022-2023学年九年级上学期数学期末试卷)如图,以SKIPIF1<0的边SKIPIF1<0为直径作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0且SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0.(1)求证:SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的长度.【答案】(1)证明见解析(2)SKIPIF1<0【分析】(1)由四边形SKIPIF1<0内接于SKIPIF1<0,得出SKIPIF1<0,根据已知SKIPIF1<0,得出SKIPIF1<0,又SKIPIF1<0,得出SKIPIF1<0,等量代换得出SKIPIF1<0,根据等角对等边,即可得证;(2)根据SKIPIF1<0为直径,得出SKIPIF1<0,根据已知以及(1)的结论,得出SKIPIF1<0,SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,在SKIPIF1<0中,根据SKIPIF1<0相等,根据勾股定理列出方程,解方程即可求解.【详解】(1)证明:∵四边形SKIPIF1<0内接于SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:如图所示,连接SKIPIF1<0,∵SKIPIF1<0为直径,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由(1)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由(1)可得SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,∴SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0.【点睛】本题考查了圆内接四边形对角互补,直径所对的圆周角是直角,勾股定理,等腰三角形的性质与判定,综合运用以上知识是解题的关键.【变式1】(2023秋·山东滨州·九年级统考期末)如图,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切线,SKIPIF1<0,SKIPIF1<0为切点,SKIPIF1<0是SKIPIF1<0的直径,连接SKIPIF1<0、SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0.求证:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)见解析(2)见解析【分析】(1)根据切线长定理得出SKIPIF1<0,SKIPIF1<0,根据三线合一得出SKIPIF1<0,根据SKIPIF1<0是SKIPIF1<0的直径,得出SKIPIF1<0,即可得证;(2)根据(1)的结论得出SKIPIF1<0,进而得出SKIPIF1<0,证明SKIPIF1<0得出SKIPIF1<0,即可得证.【详解】(1)证明:∵SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切线,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的直径∴SKIPIF1<0,∴SKIPIF1<0;(2)证明:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.【点睛】本题考查了切线长定理,相似三角形的性质与判定,掌握以上知识是解题的关键.【变式2】(2022·江西萍乡·校考模拟预测)如图,SKIPIF1<0是SKIPIF1<0的外接圆,SKIPIF1<0,SKIPIF1<0,P是SKIPIF1<0上的一动点.(1)当SKIPIF1<0的度数为多少时,SKIPIF1<0;(2)若以动点P为切点的切线为SKIPIF1<0,那么当SKIPIF1<0的度数为多少时,切线SKIPIF1<0与SKIPIF1<0一边平行?【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】(1)根据三角形内角和定理可得SKIPIF1<0,再由SKIPIF1<0,可得SKIPIF1<0,再由圆周角定理,即可求解;(2)分三种情况:当SKIPIF1<0时,连接SKIPIF1<0;当SKIPIF1<0时,连接SKIPIF1<0,SKIPIF1<0,并反向延长SKIPIF1<0,交SKIPIF1<0于点E;当SKIPIF1<0时,反向延长SKIPIF1<0,交SKIPIF1<0于点F,连接SKIPIF1<0,结合切线的性质,垂径定理以及圆周角定理,即可求解.【详解】(1)解:在SKIPIF1<0中,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴当SKIPIF1<0时,SKIPIF1<0;(2)解:①如图2,当SKIPIF1<0时,连接SKIPIF1<0,∵SKIPIF1<0切SKIPIF1<0于点P,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是半径,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;②如图3,当SKIPIF1<0时,连接SKIPIF1<0,SKIPIF1<0,并反向延长SKIPIF1<0,交SKIPIF1<0于点E,∵SKIPIF1<0切SKIPIF1<0于点P,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;③如图4,当SKIPIF1<0时,反向延长SKIPIF1<0,交SKIPIF1<0于点F,连接SKIPIF1<0,∵SKIPIF1<0切SKIPIF1<0于点P,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;终上所述,SKIPIF1<0的度数为SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【点睛】本题主要考查了圆周角定理,切线的性质,垂径定理,三角内角和定理等知识,熟练掌握圆周角定理,切线的性质,垂径定理,利用分类讨论思想解答是解题的关键.【变式3】(2023春·安徽合肥·九年级合肥寿春中学校考阶段练习)如图,在SKIPIF1<0中,直径为SKIPIF1<0,正方形SKIPIF1<0的四个顶点分别在半径SKIPIF1<0、SKIPIF1<0以及SKIPIF1<0上,并且SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的长度;(2)若半径是5,求正方形SKIPIF1<0的边长.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由四边形SKIPIF1<0为正方形,得SKIPIF1<0,则SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,求出SKIPIF1<0,再连接SKIPIF1<0,构造直角三角形,求出SKIPIF1<0和SKIPIF1<0的长,然后利用勾股定理即可求出圆的半径,可得SKIPIF1<0.(2)证出SKIPIF1<0是等腰直角三角形,得出SKIPIF1<0,求出SKIPIF1<0,连接SKIPIF1<0,得出SKIPIF1<0,再根据勾股定理求出SKIPIF1<0的长即可.【详解】(1)解:SKIPIF1<0四边形SKIPIF1<0为正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,连接SKIPIF1<0,则SKIPIF1<0为直角三角形,∴SKIPIF1<0,∴即SKIPIF1<0的半径为SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0四边形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,则正方形SKIPIF1<0的边长为SKIPIF1<0.【点睛】此题考查了圆的性质,正方形的性质和等腰直角三角形的性质,解题的关键是证出SKIPIF1<0是等腰直角三角形,得出SKIPIF1<0,作出辅助线,利用勾股定理求解.考点3:与角度有关的问题典例3:(2022·北京·统考中考真题)如图,SKIPIF1<0是SKIPIF1<0的直径,SKIPIF1<0是SKIPIF1<0的一条弦,SKIPIF1<0连接SKIPIF1<0(1)求证:SKIPIF1<0(2)连接SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延长线于点SKIPIF1<0,延长SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,若SKIPIF1<0为SKIPIF1<0的中点,求证:直线SKIPIF1<0为SKIPIF1<0的切线.【答案】(1)答案见解析(2)答案见解析【分析】(1)设SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0,证明SKIPIF1<0,故可得SKIPIF1<0,于是SKIPIF1<0,即可得到SKIPIF1<0;(2)连接AD,解出SKIPIF1<0,根据SKIPIF1<0为直径得到SKIPIF1<0,进而得到SKIPIF1<0,即可证明SKIPIF1<0,故可证明直线SKIPIF1<0为SKIPIF1<0的切线.【详解】(1)证明:设SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0,由题可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)证明:连接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理可得:SKIPIF1<0,SKIPIF1<0,∵点H是CD的中点,点F是AC的中点,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0为SKIPIF1<0的直径,

SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直线SKIPIF1<0为SKIPIF1<0的切线.【点睛】本题主要考查三角形全等的判定与性质,同弧所对的圆周角相等,圆周角定理,直线平行的判定与性质,三角形的内角和公式,证明三角形全等以及证明平行线是解题的关键.【变式1】(2022·四川成都·统考中考真题)如图,在SKIPIF1<0中,SKIPIF1<0,以SKIPIF1<0为直径作⊙SKIPIF1<0,交SKIPIF1<0边于点SKIPIF1<0,在SKIPIF1<0上取一点SKIPIF1<0,使SKIPIF1<0,连接SKIPIF1<0,作射线SKIPIF1<0交SKIPIF1<0边于点SKIPIF1<0.(1)求证:SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0及SKIPIF1<0的长.【答案】(1)见解析(2)BF=5,SKIPIF1<0【分析】(1)根据SKIPIF1<0中,SKIPIF1<0,得到∠A+∠B=∠ACF+∠BCF=90°,根据SKIPIF1<0,得到∠B=∠BCF,推出∠A=∠ACF;(2)根据∠B=∠BCF,∠A=∠ACF,得到AF=CF,BF=CF,推出AF=BF=SKIPIF1<0AB,根据SKIPIF1<0,AC=8,得到AB=10,得到BF=5,根据SKIPIF1<0,得到SKIPIF1<0,连接CD,根据BC是⊙O的直径,得到∠BDC=90°,推出∠B+∠BCD=90°,推出∠A=∠BCD,得到SKIPIF1<0,推出SKIPIF1<0,得到SKIPIF1<0,根据∠FDE=∠BCE,∠B=∠BCE,得到∠FDE=∠B,推出DE∥BC,得到△FDE∽△FBC,推出SKIPIF1<0,得到SKIPIF1<0.【详解】(1)解:∵SKIPIF1<0中,SKIPIF1<0,∴∠A+∠B=∠ACF+∠BCF=90°,∵SKIPIF1<0,∴∠B=∠BCF,∴∠A=∠ACF;(2)∵∠B=∠BCF,∠A=∠ACF∴AF=CF,BF=CF,∴AF=BF=SKIPIF1<0AB,∵SKIPIF1<0,AC=8,∴AB=10,∴BF=5,∵SKIPIF1<0,∴SKIPIF1<0,连接CD,∵BC是⊙O的直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∴∠A=∠BCD,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵∠FDE=∠BCE,∠B=∠BCE,∴∠FDE=∠B,∴DE∥BC,∴△FDE∽△FBC,∴SKIPIF1<0,∴SKIPIF1<0.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.【变式2】(2021·北京·统考中考真题)如图,SKIPIF1<0是SKIPIF1<0的外接圆,SKIPIF1<0是SKIPIF1<0的直径,SKIPIF1<0于点SKIPIF1<0.(1)求证:SKIPIF1<0;(2)连接SKIPIF1<0并延长,交SKIPIF1<0于点SKIPIF1<0,交SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0.若SKIPIF1<0的半径为5,SKIPIF1<0,求SKIPIF1<0和SKIPIF1<0的长.【答案】(1)见详解;(2)SKIPIF1<0,SKIPIF1<0【分析】(1)由题意易得SKIPIF1<0,然后问题可求证;(2)由题意可先作图,由(1)可得点E为BC的中点,则有SKIPIF1<0,进而可得SKIPIF1<0,然后根据相似三角形的性质可进行求解.【详解】(1)证明:∵SKIPIF1<0是SKIPIF1<0的直径,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:由题意可得如图所示:由(1)可得点E为BC的中点,∵点O是BG的中点,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0的半径为5,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【点睛】本题主要考查垂径定理、三角形中位线及相似三角形的性质与判定,熟练掌握垂径定理、三角形中位线及相似三角形的性质与判定是解题的关键.【变式3】(2020·上海·统考中考真题)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【答案】(1)证明见解析;(2)∠BCD的值为67.5°或72°;(3)SKIPIF1<0.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AESKIPIF1<0BC交BD的延长线于E.则SKIPIF1<0,进而得到SKIPIF1<0,设OB=OA=4a,OH=3a,根据BH2=AB2-AH2=OB2-OH2,构建方程求出a即可解决问题.【详解】解:(1)连接OA,如下图1所示:∵AB=AC,∴SKIPIF1<0=SKIPIF1<0,∴OA⊥BC,∴∠BAO=∠CAO.∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD.∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD.∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,则D与A重合,这种情形不存在.综上所述:∠C的值为67.5°或72°.(3)如图3中,过A点作AESKIPIF1<0BC交BD的延长线于E.则SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,且BC=2BH,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,设OB=OA=4a,OH=3a.则在Rt△ABH和Rt△OBH中,∵BH2=AB2﹣AH2=OB2﹣OH2,∴25-49a2=16a2﹣9a2,∴a2=SKIPIF1<0,∴BH=SKIPIF1<0,∴BC=2BH=SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题属于圆的综合题,考查了垂径定理,等腰三角形的性质,勾股定理解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数构建方程解决问题,属于中考常考题型.考点3:与三角函数有关的计算典例3:(2022·江苏苏州·苏州市振华中学校校考二模)如图,AB是⊙O的弦,C为⊙O上一点,过点C作AB的垂线与AB的延长线交于点D,连接BO并延长,与⊙O交于点E,连接EC,SKIPIF1<0.(1)求证:CD是⊙O的切线;(2)若SKIPIF1<0,SKIPIF1<0,求AB的长.【答案】(1)见解析;(2)SKIPIF1<0.【分析】(1)连接OC,利用三角形的外角定理得到:SKIPIF1<0,因为SKIPIF1<0,可证明SKIPIF1<0,因为SKIPIF1<0,进一步可得SKIPIF1<0;(2)分析可得:SKIPIF1<0,再利用同弧所对圆周角相等可知:SKIPIF1<0,利用SKIPIF1<0,SKIPIF1<0,即可求出AB.【详解】(1)证明:连接OC,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴CD是⊙O的切线;(2)解:连接AC,BC,∵BE是⊙O的直径,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【点睛】本题考查切线的判定,解直角三角形,第(1)问证CD是⊙O的切线,关键是证明SKIPIF1<0;第(2)问的关键是证明SKIPIF1<0,SKIPIF1<0.【变式1】(2020·广西柳州·统考中考真题)如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.(1)求证:△ACD∽△CFD;(2)若∠CDA=∠GCA,求证:CG为⊙O的切线;(3)若sin∠CAD=SKIPIF1<0,求tan∠CDA的值.【答案】(1)见解析;(2)见解析;(3)SKIPIF1<0.【分析】(1)由垂径定理得SKIPIF1<0,由圆周角定理得∠CAD=∠FCD,再由公共角∠ADC=∠CDF,即可得出△ACD∽△CFD;(2)连接OC,由圆周角定理得∠ACB=90°,则∠ABC+∠CAB=90°,由等腰三角形的性质得∠OBC=∠OCB,证出∠OCB=∠GCA,得出∠OCG=90°,即可得出结论;(3)连接BD,由圆周角定理得∠CAD=∠CBD,则sin∠CAD=sin∠CBD=SKIPIF1<0,设DE=x,OD=OB=r,则OE=r﹣x,BD=3x,由勾股定理得BE=SKIPIF1<0,则BC=2BE=SKIPIF1<0,在Rt△OBE中,由勾股定理得(r﹣x)2+(SKIPIF1<0)2=r2,解得r=SKIPIF1<0,则AB=2r=9x,由勾股定理求出AC=7x,由三角函数定义即可得出答案.【详解】(1)证明:∵OD⊥BC,∴SKIPIF1<0,∴∠CAD=∠FCD,又∵∠ADC=∠CDF,∴△ACD∽△CFD;(2)证明:连接OC,如图1所示:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∵OB=OC,∴∠OBC=∠OCB,∵∠CDA=∠OBC,∠CDA=∠GCA,∴∠OCB=∠GCA,∴∠OCG=∠GCA+∠OCA=∠OCB+∠OCA=90°,∴CG⊥OC,∵OC是⊙O的半径,∴CG是⊙O的切线;(3)解:连接BD,如图2所示:∵∠CAD=∠CBD,∵OD⊥BC,∴sin∠CAD=sin∠CBD=SKIPIF1<0,BE=CE,设DE=x,OD=OB=r,则OE=r﹣x,BD=3x在Rt△BDE中,BE=SKIPIF1<0,∴BC=2BE=SKIPIF1<0,在Rt△OBE中,OE2+BE2=OB2,即(r﹣x)2+(SKIPIF1<0)2=r2,,解得:r=SKIPIF1<0,∴AB=2r=9x,在Rt△ABC中,AC2+BC2=AB2,∴AC2+(SKIPIF1<0)2=(9x)2,∴AC=7x或AC=﹣7x(舍去),∴tan∠CDA=tan∠CBA=SKIPIF1<0=SKIPIF1<0.【点睛】本题考查了切线的判定,圆周角定理,垂径定理,相似三角形的判定,三角函数等知识.本题综合性比较强,熟练掌握圆周角定理,垂径定理是解题的关键.【变式2】(2020·北京·统考中考真题)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sinC=SKIPIF1<0,BD=8,求EF的长.【答案】(1)见解析;(2)2.【分析】(1)连接OD,根据CD是⊙O的切线,可推出∠ADC+∠ODA=90°,根据OF⊥AD,∠AOF+∠DAO=90°,根据OD=OA,可得∠ODA=∠DAO,即可证明;(2)设半径为r,根据在Rt△OCD中,SKIPIF1<0,可得SKIPIF1<0,AC=2r,由AB为⊙O的直径,得出∠ADB=90°,再根据推出OF⊥AD,OF∥BD,然后由平行线分线段成比例定理可得SKIPIF1<0,求出OE,SKIPIF1<0,求出OF,即可求出EF.【详解】(1)证明:连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠ADC+∠ODA=90°,∵OF⊥AD,∴∠AOF+∠DAO=90°,∵OD=OA,∴∠ODA=∠DAO,∴∠ADC=∠AOF;(2)设半径为r,在Rt△OCD中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵OA=r,∴AC=OC-OA=2r,∵AB为⊙O的直径,∴∠ADB=90°,又∵OF⊥AD,∴OF∥BD,∴SKIPIF1<0,∴OE=4,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.【变式3】(2022·四川成都·模拟预测)如图,AB是⊙O的直径,弦CD⊥AB于点E,点F在弧BC上,AF与CD交于点G,点H在DC的延长线上,且HG=HF,延长HF交AB的延长线于点M.(1)求证:HF是⊙O的切线;(2)若SKIPIF1<0,BM=1,求AF的长.【答案】(1)见解析(2)SKIPIF1<0【分析】(1)连接OF,根据CD⊥AB,可得∠A+∠AGE=90°,再由HG=HF,可得∠HFG=∠AGE,然后根据OA=OF,可得∠A=∠OFA,即可求证;(2)连接BF,先证得△BFM∽△FAM,可得SKIPIF1<0,再由SKIPIF1<0,可得OM=5,AM=9,AB=8,FM=3,从而得到SKIPIF1<0,然后由勾股定理,即可求解.【详解】(1)证明:连接OF,∵CD⊥AB,∴∠AEG=90°,∴∠A+∠AGE=90°,∵HG=HF,∴∠HFG=∠HGF,∵∠HGF=∠AGE,∴∠HFG=∠AGE,∵OA=OF,∴∠A=∠OFA,∴∠OFA+∠HFG=90°,即∠OFH=90°,∴HF是⊙O的切线;(2)解:如图,连接BF,由(1)得:∠OFM=90°,∴∠BFO+∠BFM=90°,∵AB是⊙O的直径,∴∠AFB=90°,∴∠A+∠ABF=90°,∵OB=OF,∴∠ABF=∠BFO,∴∠BFM=∠A,∵∠M=∠M,∴△BFM∽△FAM,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵BM=1,OB=OF,∴SKIPIF1<0,解得:OF=4,∴OM=5,AM=9,AB=8,∴FM=SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0.【点睛】本题主要考查了圆的综合题,熟练掌握切线的判定,相似三角形的判定和性质,理解锐角三角函数是解题的关键.巩固训练一、单选题1.(2022秋·江苏徐州·九年级校考阶段练习)如图,SKIPIF1<0的直径SKIPIF1<0与弦SKIPIF1<0的延长线交于点SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0=()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根据示意图结合已知条件可得出SKIPIF1<0,因此,SKIPIF1<0,即可得出SKIPIF1<0,计算即可得出答案.【详解】解:∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0故选:A.【点睛】本题考查的知识点是圆的综合题目,根据示意图得出SKIPIF1<0是解此题的关键.2.(2023春·九年级课时练习)已知SKIPIF1<0过正方形SKIPIF1<0顶点SKIPIF1<0,SKIPIF1<0,且与SKIPIF1<0相切,若正方形边长为SKIPIF1<0,则圆的半径为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】作SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0,在直角SKIPIF1<0中根据勾股定理即可得到一个关于半径的方程,即可求得.【详解】解析:如图,作SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0,设圆的半径是SKIPIF1<0,则在直角SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.故选:B.【点睛】本题主要考查了切线的性质、垂径定理以及勾股定理,在圆的有关半径、弦长、弦心距之间的计算一般要转化为直角三角形的计算.3.(2017·山东青岛·中考真题)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100° B.110° C.115° D.120°【答案】B【分析】连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.4.(2022秋·江苏无锡·九年级校考阶段练习)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.且DC+DA=12,⊙O的直径为20,则AB的长等于(

)A.8 B.12 C.16 D.18【答案】B【分析】过O作OF⊥AB,垂足为F,连接OC,根据圆的基本性质和角平分线的定义,可得∠DAC=∠OCA,从而得到OC⊥CD,得到四边形DCOF为矩形,从而得到OC=FD,OF=CD,然后设AD=x,则OF=CD=12-x,AF=10-x,在Rt△AOF中,由勾股定理得到AD=4,从而得到AF=6再由垂径定理,即可求解.【详解】解:过O作OF⊥AB,垂足为F,连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴OC⊥CD,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD,∵DC+DA=12,设AD=x,则OF=CD=12-x,∵⊙O的直径为20,∴DF=OC=10,∴AF=10-x,在SKIPIF1<0中,由勾股定理得AF2+OF2=OA2,即(10-x)2+(12-x)2=102,解得:SKIPIF1<0(不合题意,舍去),∴AD=4,∴OF=8,∴SKIPIF1<0,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=12.故选:B【点睛】本题主要考查了圆的基本性质,勾股定理,垂径定理,矩形的判定和性质,熟练掌握相关知识点是解题的关键.5.(2018秋·湖北武汉·九年级统考期中)如图,△ABC内接于⊙O,AB是⊙O的直径,CE平分∠ACB交⊙O于E,∠E=30°,交AB于点D,连接AE,则S△ADC∶S△ADE的比值为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】C【详解】试题解析:过C作CF⊥AB于F,连接OE,设AC=a,∵AB是SKIPIF1<0的直径,SKIPIF1<0SKIPIF1<0SKIPIF1<0∵CE平分∠ACB交O于E,∴SKIPIF1<0=SKIPIF1<0,∴OE⊥AB,SKIPIF1<0SKIPIF1<0故选C.6.(2022春·九年级课时练习)如图,圆SKIPIF1<0的两条弦SKIPIF1<0相交于点SKIPIF1<0和SKIPIF1<0的延长线交于点SKIPIF1<0,下列结论中成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论