版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省宣城市太元中学高二数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线,弦AB过焦点,为阿基米德三角形,则的面积的最小值为(
)A. B. C. D.参考答案:B【分析】利用导数的知识,可得,即三角形为直角三角形,利用基本不等式,可得当直线垂直轴时,面积取得最小值.【详解】设,过A,B的切线交于Q,直线的方程为:,把直线的方程代入得:,所以,则,由导数的知识得:,所以,所以,所以,因为,当时,可得的最大值为,故选B.【点睛】本题是一道与数学文化有关的试题,如果能灵活运用阿基米德三角形的结论,即当直线过抛物线的焦点,则切线与切线互相垂直,能使运算量变得更小.2.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89参考答案:B试题分析:由题意,①②③④⑤⑥⑦⑧,从而输出,故选B.考点:1.程序框图的应用.3..在4次独立试验中,事件A出现的概率相同,若事件A至少发生1次的概率是,则事件A在一次试验中出现的概率是A.
B.
C.
D.参考答案:A略4.设,则的值为
(
)(A).0
(B).-1(C).1(D).参考答案:C略5.在△ABC中,,分别是角A,B,C所对的边.若A=,=1,的面积为,则的值为()A.1
B.2
C.
D.参考答案:D略6.已知曲线和直线ax+by+1=0(a,b为非零实数)在同一坐标系中,它们的图像可能为()参考答案:C7.若在R上可导,,则(
)A.
B.
C.
D.参考答案:B略8.已知向量,,若与的夹角为,则(
)
参考答案:C略9.点P在边长为1的正方形ABCD内运动,则动点P到定点A的距离|PA|<1的概率为(
)A.
B.
C.
D.π参考答案:C由题意可知,当动点P位于扇形ABD内时,动点P到定点A的距离|PA|<1,根据几何概型可知,动点P到定点A的距离|PA|<1的概率为=,故选C.
10.若△ABC的内角A、B、C所对的边a、b、c满足(a+b)2-c2=4,且C=60°,则ab的值为()A、 B、
C、1
D、参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列{an},则此数列的通项公式为an=_____.参考答案:【分析】由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.12.有下列四个命题:①“若,则互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;③“若,则有实根”的逆命题;④“若,则”的逆否命题;其中真命题的序号为
▲
.参考答案:略13.命题“.”的否定为
.参考答案:14.已知函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且f(2)=3,则f(-1)=
.参考答案:略15.已知命题,,则:
参考答案:,16.已知(k是正整数)的展开式中,的系数小于120,求k=_____________.
参考答案:
k=117.若函数有零点,则的取值范围是
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.
已知曲线与曲线相切于点P,且在点P处有相同的切线,求切线的方程.参考答案:略19.在某地区有2000个家庭,每个家庭有4个孩子,假定男孩出生率是、(1)求在一个家庭中至少有一个男孩的概率;(2)求在一个家庭中至少有一个男孩且至少有一个女孩的概率;参考答案:解析:
(1)P(至少一个男孩)=1-P(没有男孩)=1-()4=;(2)P(至少1个男孩且至少1个女孩)=1-P(没有男孩)-P(没有女孩)=1--=;20.用冒泡排序法将下列各数排成一列:8,6,3,18,21,67,54.并写出各趟的最后结果及各趟完成交换的次数.参考答案:每一趟都从头开始,两个两个地比较,若前者小,则两数位置不变;否则,调整这两个数的位置.第一趟的结果是:6
3
8
18
21
54
67完成3次交换.第二趟的结果是:3
6
8
18
21
54
67完成1次交换.第三趟交换次数为0,说明已排好次序,即3
6
8
18
21
54
67.21.已知命题P:在R上定义运算?:x?y=(1﹣x)y.不等式x?(1﹣a)x<1对任意实数x恒成立;命题Q:若不等式≥2对任意的x∈N*恒成立.若P∧Q为假命题,P∨Q为真命题,求实数a的取值范围.参考答案:考点:复合命题的真假.专题:简易逻辑.分析:(1)由题意知,x?(1﹣a)x=(1﹣x)(1﹣a)x,若命题P为真,(1﹣a)x2﹣(1﹣a)x+1>0对任意实数x恒成立,对1﹣a分类讨论:当1﹣a=0时,直接验证;当1﹣a≠0时,,解出即可.(2)若命题Q为真,不等式≥2对任意的x∈N*恒成立,可得(x2+ax+6)≥2(x+1)对任意的x∈N*恒成立,即对任意的x∈N*恒成立,利用基本不等式的性质即可得出.由于P∧Q为假命题,P∨Q为真命题,可得P,Q中必有一个真命题,一个假命题.解答:解:(1)由题意知,x?(1﹣a)x=(1﹣x)(1﹣a)x,若命题P为真,(1﹣a)x2﹣(1﹣a)x+1>0对任意实数x恒成立,∴①当1﹣a=0即a=1时,1>0恒成立,∴a=1;②当1﹣a≠0时,,∴﹣3<a<1,综合①②得,﹣3<a≤1.若命题Q为真,∵x>0,∴x+1>0,则(x2+ax+6)≥2(x+1)对任意的x∈N*恒成立,即对任意的x∈N*恒成立,令,只需a≥f(x)max,∵,当且仅当,即x=2时取“=”.∴a≥﹣2.∵P∧Q为假命题,P∨Q为真命题,∴P,Q中必有一个真命题,一个假命题.若P为真Q为假,则,﹣3<a<﹣2,若P为假Q为真,则,∴a>1,综上可得a取值范围:﹣3<a<﹣2或a>1.点评:本题考查了简易逻辑的判定、不等式的解法、很残酷问题的等价转化方法、分类讨论思想方法、基本不等式的性质、不等式的解集与判别式的关系,考查了推理能力与计算能力,属于难题.22.小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)求x+y能被3整除的概率;(2)规定:若x+y≥10,则小王赢,若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.参考答案:【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)由于x,y取值为1,2,3,4,5,6,列举出(x,y)为坐标的点和x+y能被3整除的点,由此能求出x+y能被3整除的概率.(2)列举出满足x+y≥10的点和满足x+y≤4的点,从而求出小王赢的概率等于小李赢的概率,所以这个游戏规则公平.【解答】(本题满分12分)解:(1)由于x,y取值为1,2,3,4,5,6,则以(x,y)为坐标的点有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个,即以(x,y)为坐标的点共有36个…x+y能被3整除的点是:(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年大学秘书部工作计划(六篇)
- 2024年幼儿园园务年度工作总结格式版(二篇)
- Sensor Tower:2024年韩国手游市场洞察报告
- 2024年大学生社会实践总结经典版(四篇)
- 2024年安全员工作职责范例(三篇)
- 2024年城市房屋拆迁补偿安置协议标准版本(二篇)
- 2024年幼儿园中班教学工作计划(四篇)
- 2024年学校生态环境管理制度样本(三篇)
- 2024年幼儿园实习总结参考样本(五篇)
- 2024年年终个人工作总结(三篇)
- 道德与法治-五年级(上册)-《传统美德 源远流长》教学课件
- 2022年公交站台监理规划
- 三年级下册信息技术课件-13.有条不紊管文件|人教版 (共29张PPT)
- 基础化学第1章-气体、溶液和胶体
- 陶瓷窑炉与设计:第一章 隧道窑
- (完整版)高校实验室安全考试试题库
- 卡通风通用新生训练一年级行为习惯养成教育PPT模板课件(PPT 21页)
- 中建地产战略规划报告ppt课件
- 第三章雷电监测定位系统
- 湘教版高中美术选修:美术鉴赏 第一单元 第一课 什么是美术作品 课件(共16张PPT)
- 喷淋塔设计标准参考0001
评论
0/150
提交评论