版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市扶沟县2023-2024学年数学九上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20° B.30° C.40° D.45°2.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x-2x+d=0有实数根,则点P()A.在⊙O的内部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O内部3.如图,已知二次函数()的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③;④;其中正确的结论是()A.①③④ B.①②③ C.①②④ D.①②③④4.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD=8,则OE长为()A.3 B.5 C.2.5 D.45.下列图形中,绕某个点旋转72度后能与自身重合的是()A. B.C. D.6.如图,在△ABC中,∠A=45°,∠C=90°,点D在线段AC上,∠BDC=60°,AD=1,则BD等于()A. B.+1 C.-1 D.7.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A. B. C.2倍 D.3倍8.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为()A. B. C. D.9.下列说法正确的是()A.对应边都成比例的多边形相似 B.对应角都相等的多边形相似C.边数相同的正多边形相似 D.矩形都相似10.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根二、填空题(每小题3分,共24分)11.已知三点A(0,0),B(5,12),C(14,0),则△ABC内心的坐标为____.12.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.13.如图,点A、B分别在反比例函数y=(k1>0)和y=(k2<0)的图象上,连接AB交y轴于点P,且点A与点B关于P成中心对称.若△AOB的面积为4,则k1-k2=______.14.将抛物线向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是_____.15.若是方程的一个根,则的值是________.16.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG.则下列结论:①∠FCG=∠CDG;②△CEF的面积等于;③FC平分∠BFG;④BE2+DF2=EF2;其中正确的结论是_____.(填写所有正确结论的序号)17.如图,一辆汽车沿着坡度为的斜坡向下行驶50米,则它距离地面的垂直高度下降了米.18.如图,平行四边形分别切于点,连接并延长交于点,连接与刚好平行,若,则的直径为______.三、解答题(共66分)19.(10分)如图,在梯形中,,,,,,点在边上,,点是射线上一个动点(不与点、重合),联结交射线于点,设,.(1)求的长;(2)当动点在线段上时,试求与之间的函数解析式,并写出函数的定义域;(3)当动点运动时,直线与直线的夹角等于,请直接写出这时线段的长.20.(6分)如图,将矩形ABCD绕点C旋转得到矩形EFGC,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.21.(6分)若关于的一元二次方程有实数根,(1)求的取值范围:(2)如果是符合条件的最小整数,且一元二次方程与方程有一个相同的根,求此时的值.22.(8分)已知中,,,、分别是、的中点,将绕点按顺时针方向旋转一个角度得到,连接、,如图1(1)求证,(2)如图2,当时,设与,,交于点,求的值.23.(8分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).24.(8分)如图,等边的边长为8,的半径为,点从点开始,在的边上沿方向运动.(1)从点出发至回到点,与的边相切了次;(2)当与边相切时,求的长度.25.(10分)某网店准备经销一款儿童玩具,每个进价为35元,经市场预测,包邮单价定为50元时,每周可售出200个,包邮单价每增加1元销售将减少10个,已知每成交一个,店主要承付5元的快递费用,设该店主包邮单价定为x(元)(x>50),每周获得的利润为y(元).(1)求该店主包邮单价定为53元时每周获得的利润;(2)求y与x之间的函数关系式;(3)该店主包邮单价定为多少元时,每周获得的利润最大?最大值是多少?26.(10分)等腰中,,作的外接圆⊙O.(1)如图1,点为上一点(不与A、B重合),连接AD、CD、AO,记与的交点为.①设,若,请用含与的式子表示;②当时,若,求的长;(2)如图2,点为上一点(不与B、C重合),当BC=AB,AP=8时,设,求为何值时,有最大值?并请直接写出此时⊙O的半径.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B=60°,∵四边形ABCD是圆内接四边形,∴∠D=180°−∠B=120°,∴∠ACD=180°−∠DAC−∠D=40°,故选C.2、D【分析】先根据条件x
2
-2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x
2
-2x+d=0有实根,∴根的判别式△=(-2)
2
-4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.3、B【分析】①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,1),当x>3时,y<1,故①正确;②抛物线开口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则,令x=1得:y=﹣3a.∵抛物线与y轴的交点B在(1,2)和(1,3)之间,∴.解得:,故③正确;④.∵抛物线y轴的交点B在(1,2)和(1,3)之间,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,与2≤c≤3矛盾,故④错误.【详解】解:①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,1),当x>3时,y<1,故①正确;②抛物线开口向下,故a<1,∵,∴2a+b=1.∴3a+b=1+a=a<1,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则,令x=1得:y=﹣3a.∵抛物线与y轴的交点B在(1,2)和(1,3)之间,∴.解得:,故③正确;④.∵抛物线y轴的交点B在(1,2)和(1,3)之间,∴2≤c≤3,由得:,∵a<1,∴,∴c﹣2<1,∴c<2,与2≤c≤3矛盾,故④错误.故选B.【点睛】本题考查二次函数图象与系数的关系,结合图像,数形结合的思想的运用是本题的解题关键..4、C【分析】根据菱形的性质可得OB=OD,AO⊥BO,从而可判断OE是△DAB的中位线,在Rt△AOB中求出AB,继而可得出OE的长度.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,
∴AO=OC=3,OB=OD=4,AO⊥BO,
又∵点E是AB中点,
∴OE是△DAB的中位线,
在Rt△AOD中,AB==5,
则OE=AD=.
故选C.【点睛】本题考查了菱形的性质及三角形的中位线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.5、B【解析】根据旋转的定义即可得出答案.【详解】解:A.旋转90°后能与自身重合,不合题意;B.旋转72°后能与自身重合,符合题意;C.旋转60°后能与自身重合,不合题意;D.旋转45°后能与自身重合,不合题意;故选B.【点睛】本题考查的是旋转:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.6、B【分析】设BC=x,根据锐角三角函数分别用x表示出AC和CD,然后利用AC-CD=AD列方程即可求出BC,再根据锐角三角函数即可求出BD.【详解】解:设BC=x∵在△ABC中,∠A=45°,∠C=90°,∴AC=BC=x在Rt△BCD中,CD=∵AC-CD=AD,AD=1∴解得:即BC=在Rt△BCD中,BD=故选:B.【点睛】此题考查的是解直角三角形的应用,掌握用锐角三角函数解直角三角形是解决此题的关键.7、A【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴==,∴像CD的长是物体AB长的.故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.8、A【分析】先根据角平分线的定义、圆周角定理可得,再根据相似三角形的判定定理得出,然后根据相似三角形的性质即可得.【详解】平分弧BD与弧CD相等又,即解得故选:A.【点睛】本题考查了角平分线的定义、圆周角定理、相似三角形的判定定理与性质,利用圆周角定理找到两个相似三角形是解题关键.9、C【解析】试题分析:根据相似图形的定义,对选项一一分析,排除错误答案.解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;D、矩形属于形状不唯一确定的图形,故错误.故选C.考点:相似图形.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.10、A【分析】直接把已知数据代入进而得出c的值,再解方程根据根的判别式分析即可.【详解】∵x=﹣1为方程x2﹣8x﹣c=0的根,1+8﹣c=0,解得c=9,∴原方程为x2-8x+9=0,∵=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A.【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程,根的情况由来判别,当>0时,方程有两个不相等的实数根,当=0时,方程有两个相等的实数根,当<0时,方程没有实数根.二、填空题(每小题3分,共24分)11、(6,4).【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.【详解】解:如图,过点B作BQ⊥AC于点Q,则AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=设⊙P的半径为r,根据三角形的面积可得:r=过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴点P的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.12、1【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.13、1【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,先证明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代换和k的几何意义得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A与点B关于P成中心对称.
∴P点为AB的中点,
∴AP=BP,
在△ACP和△BDP中,
∴△ACP≌△BDP(AAS),
∴S△ACP=S△BDP,
∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1
∵k1>0,k2<0,
∴k1-k2=1.
故答案为1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.14、【分析】先确定抛物线y=x2﹣2的二次项系数a=1,顶点坐标为(0,﹣2),向上平移一个单位后(0,﹣1),翻折后二次项系数a=-1,顶点坐标变为(0,1),然后根据顶点式写出新抛物线的解析式.【详解】抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于x轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣x2+1.故答案为:y=﹣x2+1.【点睛】此题考查抛物线的平移规律:左加右减,上加下减,翻折口开口方向改变,但是大小没变,因此二次项系数改变的只是符号,正确掌握平移的规律并运用解题是关键.15、1【分析】将代入方程,得到,进而得到,,然后代入求值即可.【详解】解:由题意,将代入方程∴,,∴故答案为:1【点睛】本题考查一元二次方程的解,及分式的化简,掌握方程的解的概念和平方差公式是本题的解题关键.16、①③④【分析】由正方形的性质可得AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,由旋转的性质可得∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,由SAS可证△ECF≌△GCF,可得EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,即可求解.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,∴∠ECF=∠ABD=45°,∴∠BCE+∠FCD=45°,∵将△BCE绕点C旋转一定角度后,得到△DCG,∴∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,∴∠FCG=∠ECF=45°,∴∠FCG=∠CDG=45°,故①正确,∵EC=CG,∠FCG=∠ECF,FC=FC,∴△ECF≌△GCF(SAS)∴EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,∴CF平分∠BFG,故③正确,∵∠BDG=∠BDC+∠CDG=90°,∴DG2+DF2=FG2,∴BE2+DF2=EF2,故④正确,∵DF+DG>FG,∴BE+DF>EF,∴S△CEF<S△BEC+S△DFC,∴△CEF的面积<S△BCD=,故②错误;故答案为:①③④【点睛】本题是一道关于旋转的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,考查了旋转的性质、正方形的性质、全等三角形的判定及性质等知识点.17、25【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】解:设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=1.解得x=25,即它距离地面的垂直高度下降了25米.【点睛】此题考查三角函数的应用.关键是熟悉且会灵活应用公式:tanα(坡度)=垂直高度÷水平宽度,综合利用了勾股定理.18、【分析】先证得四边形AGCH是平行四边形,则,再证得,求得,证得DO⊥HC,根据,即可求得半径,从而求得结论.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥HC,∴四边形AGCH是平行四边形,∴,∵是⊙O的切线,且切点为、,∴,∠GCH=∠HCD,∵AD∥BC,∴∠DHC=∠GCH,∴∠DHC=∠HCD,∴三角形DHC为等腰三角形,∴,∴,∴,,连接OD、OE,如图,∵是⊙O的切线,且切点为、,∴DO是∠FDE的平分线,又∵,∴DO⊥HC,∴∠DOC=90,∵切⊙O于,∴OE⊥CD,∵∠OCE+∠COE=90,∠DOE+∠COE=90,∴∠OCE=∠DOE,∴,∴,即,∴,∴⊙O的直径为:故答案为:.【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得为等腰三角形是解题的关键.三、解答题(共66分)19、(1);(1);(3)线段的长为或13【分析】(1)如图1中,作AH⊥BC于H,解直角三角形求出EH,CH即可解决问题.
(1)延长AD交BM的延长线于G.利用平行线分线段成比例定理构建关系式即可解决问题.
(3)分两种情形:①如图3-1中,当点M在线段DC上时,∠BNE=∠ABC=45°.②如图3-1中,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,利用相似三角形的性质即可解决问题.【详解】:(1)如图1中,作AH⊥BC于H,
∵AD∥BC,∠C=90°,
∴∠AHC=∠C=∠D=90°,
∴四边形AHCD是矩形,
∴AD=CH=1,AH=CD=3,
∵tan∠AEC=3,
∴=3,
∴EH=1,CE=1+1=3,
∴BE=BC-CE=5-3=1.(1)延长,交于点,∵AG∥BC,∴,∴,∵,∴.解得:(3)①如图3-1中,当点M在线段DC上时,∠BNE=∠ABC=45°,∵,,则有,解得:②如图3-1中,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,
∵,∴,则有,解得综上所述:线段的长为或13.【点睛】此题考查四边形综合题,相似三角形的判定和性质,矩形的判定和性质,解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.20、(1)见解析;(2)见解析.【解析】(1)依据题意可得到FE=AB=DC,∠F=∠EDC=90°,FH∥EC,利用平行线的性质可证明∠FHE=∠CED,然后依据AAS证明△EDC≌△HFE即可;
(2)首先证明四边形BEHC为平行四边形,再证明邻边BE=BC即可证明四边形BEHC是菱形.【详解】(1)证明:∵矩形FECG由矩形ABCD旋转得到,∴FE=AB=DC,∠F=∠EDC=90°,FH∥EC,∴∠FHE=∠CED.在△EDC和△HFE中,,∴△EDC≌△HFE(AAS);(2)∵△EDC≌△HFE,∴EH=EC.∵矩形FECG由矩形ABCD旋转得到,∴EH=EC=BC,EH∥BC,∴四边形BEHC为平行四边形.∵∠BCE=60°,EC=BC,∴△BCE是等边三角形,∴BE=BC,∴四边形BEHC是菱形.【点睛】本题主要考查的是旋转的性质、菱形的判定,熟练掌握相关图形的性质和判定定理是解题的关键.21、(1)且;(2).【分析】(1)根据跟的判别式进行计算即可;(2)先求出最小整数m,然后解出的解,再分情况进行判断.【详解】解:(1)化为一般式:方程有实数根∴解得:且,(2)由(1)且,若是最小整数∴方程变形为,解得,∵一元二次方程与方程有一个相同的根①当时,,∴②当时,,∴,(舍去,∵)综上所示,【点睛】本题考查了一元二次方程根的判别式和一元二次方程的解,熟练掌握相关内容是解题的关键.22、(1)见解析;(2)【分析】(1)首先依据旋转的性质和中点的定义证明,然后再利用SAS证明,再利用全等三角形的性质即可得到答案;(2)连接,先证明是等边三角形。然后再证为直角三角形,再证,最后依据相似三角形的性质即可得出答案.【详解】解:(1)证明∵,,分别是,的中点,∴由旋转的性质可知:∴,∴,∴(2)连接∵,∴是等边三角形∴∴,∴,∵,∴,∴又∵,∴∴,∵在中,,∴【点睛】本题是一道综合题,考查了全等的判定与性质和相似三角形的判定与性质,能够充分调动所学知识是解题的关键.23、32.2m.【详解】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=25°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形,∴CE=AB=12m,在Rt△CBE中,cot∠CBE=,∴BE=CE•cot30°=12×=12,在Rt△BDE中,由∠DBE=25°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.2.答:楼房CD的高度约为32.2m.考点:解直角三角形的应用——仰角俯角问题.24、(1)6;(2)的长度为2或.【分析】(1)由移动过程可知,圆与各边各相切2次;(2)由两种情况,分别构造直角三角形,利用勾股定理求解.【详解】解:(1)由移动过程可知,圆与各边各相切2次,故共相切6次.(2)情况如图,E,F为切点,则O1E=O2F=因为是等边三角形所以∠A=∠C=60°所以∠AO1E=30°所以AE=所以由O1E2+AE2=O1A2得.解得:=2所以AE=1因为AO1E≌CO2F(AAS)所以CF=AE=1所以AF=AC-CF=8-1=7所以,.所以,的长度为2或.【点睛】考核知识点:切线性质.理解切线性质,利用勾股定理求解.25、(1)2210;(2)y=﹣10x2+1100x﹣28000;(3)包邮单价定为55元时,每周获得的利润最大,最大值是1元.【分析】(1)根据利润=每件的利润×销售量即可.
(2)根据利润=每件的利润×销售量即可.(3)根据(2)中关系式,将它化为顶点式即可.【详解】(1)(53﹣35﹣5)×[200﹣(53﹣50)×10]=13×170=2210(元).答:每周获得的利润为2210元;(2)由题意,y=(x﹣35﹣5)[200﹣10(x﹣50)]即y与x之间的函数关系式为:y=﹣10x2+1100x﹣28000;(3)∵y=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+1.∵﹣10<0,∴包邮单价定为55元时,每周获得的利润最大,最大值是1元.【点睛】本题主要考查的是二次函数的应用,将实际问题转化为数学模型求解,注意配方法求二次函数最值的应用26、(1)①;②;(2)PB=5时,S有最大值,此时⊙O的半径是.【分析】(1)①连接BO、CO,利用SSS可证明△ABO≌△ACO,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年普洱道路客运输从业资格证考试题答案
- 2024年石家庄客车从业资格证考试试题
- 电子行业污水处理技术方案
- 2024年加气柱项目立项申请报告模范
- 2024年广西客运从业资格证考试题目及答案详解
- 2024年健身教练与学员服务合同
- 2024年豆奶项目提案报告模范
- 中小学信息技术教室精装修方案
- 2024年高纯BN扩散沅制品项目规划申请报告模范
- 2024年吐鲁番客运从业资格证模拟考
- 小学英语-Unit4 There is an old building in my school教学设计学情分析教材分析课后反思
- 《汽车电气设备检测与维修》 课件 任务14、15 转向灯故障诊断与维修(一、二)
- 离职申请表(完整版)
- 项目5 S7-1200 PLC控制步进电机与伺服电机
- 物业公司章程模板
- 国开2023年秋《分析化学(本)》形考任务1-3参考答案
- 高等电力系统分析-课件
- 检验科标本采集课件
- 直销成功之推崇配合带动教学课件
- 低倍组织检验课件
- 机械加工工时定额时间标准
评论
0/150
提交评论