江西省萍乡市琴亭中学2022-2023学年高二数学理知识点试题含解析_第1页
江西省萍乡市琴亭中学2022-2023学年高二数学理知识点试题含解析_第2页
江西省萍乡市琴亭中学2022-2023学年高二数学理知识点试题含解析_第3页
江西省萍乡市琴亭中学2022-2023学年高二数学理知识点试题含解析_第4页
江西省萍乡市琴亭中学2022-2023学年高二数学理知识点试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省萍乡市琴亭中学2022-2023学年高二数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56

B.46,45,53C.47,45,56

D.45,47,53参考答案:A2.已知等差数列{an}的前n项和为Sn且满足S17>0,S18<0,则中最大的项为(

)A. B. C. D.参考答案:D【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】由题意可得a9>0,a10<0,由此可知>0,>0,…,<0,<0,…,<0,即可得出答案.【解答】解:∵等差数列{an}中,S17>0,且S18<0即S17=17a9>0,S18=9(a10+a9)<0

∴a10+a9<0,a9>0,∴a10<0,∴等差数列{an}为递减数列,故可知a1,a2,…,a9为正,a10,a11…为负;∴S1,S2,…,S17为正,S18,S19,…为负,∴>0,>0,…,<0,<0,…,<0,又∵S1<S2<…<S9,a1>a2>…>a9,∴中最大的项为故选D【点评】本题考查学生灵活运用等差数列的前n项和的公式化简求值,掌握等差数列的性质,属中档题.3.下列三个判断:①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为;②名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;③从总体中抽取的样本(x1,y1),(x2,y2),…(xn,yn),则回归直线必过点其中正确的个数有:A.0个

B.1个

C.2个

D.3个参考答案:B4.过点作圆的两条切线,切点分别为为原点,则的外接圆方程是A.

B.C.

D.参考答案:A略5.在某项体育比赛中,七位裁判为一选手打出的分数如下:90

89

90

95

93

94

93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为

)、92,2

、92,2.8

、93,2

、93,2.8

参考答案:B6.已知命题p:直线与直线之间的距离不大于1,命题q:椭圆2x2+27y2=54与双曲线9x2﹣16y2=144有相同的焦点,则下列命题为真命题的是()A.p∧(¬q) B.(¬p)∧q C.(¬p)∧(¬q) D.p∧q参考答案:B【考点】命题的真假判断与应用;复合命题的真假.【分析】先判断命题p和命题q的真假,进而根据复合命题真假判断的真值表,可得答案.【解答】解:对于命题p,直线与直线的距离=>1,所以命题p为假命题,于是¬p为真命题;对于命题q,椭圆2x2+27y2=54与双曲线9x2﹣16y2=144有相同的焦点(±5,0),故q为真命题,从而(¬p)∧q为真命题.p∧(¬q),(¬p)∧(¬q),p∧q为假命题,故选:B7.五项不同的工程,由三个工程队全部承包下来,每队至少承包一项工程。则不同的承包方案有

A.30

B.60

C.150

D.180参考答案:C8.下面四个命题中真命题的是()①从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在回归直线方程=0.4x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.4个单位;④对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.A.①④ B.②④ C.①③ D.②③参考答案:D【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据回归系数的几何意义,可判断③;根据独立性检验的方法和步骤,可判断④.【解答】解:根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;在回归直线方程=0.4x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.4个单位,故③为真命题;对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越小,故④为假命题;故真命题为:②③,故选D.【点评】本题以命题的真假判断为载体考查了抽样方法,相关系数,回归系数及独立性检验等知识点,难度不大,属于基础题.9.椭圆+=1的焦点坐标是()A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0)参考答案:C【考点】椭圆的简单性质.【分析】由a,b,c的关系即可得出焦点坐标.【解答】解:椭圆的方程+=1中a2=169,b2=25,∴c2=a2﹣b2=144,又该椭圆焦点在y轴,∴焦点坐标为:(0,±12).故选:C.10.命题“若x+y是偶数,则x,y都是偶数”的否命题是

(

)A.若x+y不是偶数,则x,y都不是偶数B.若x+y不是偶数,则x,y不都是偶数C.若x+y是偶数,则x,y不都是偶数D.若x+y是偶数,则x,y都不是偶数参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知圆:(,为正实数)的圆心在直线:上,则的最小为

.参考答案:12.已知双曲线C:的离心率为2,焦点到渐近线的距离为,则双曲线C的焦距为_____________.参考答案:4.【分析】利用双曲线的性质及条件列a,b,c的方程组,求出c可得.【详解】因为双曲线的离心率为2,焦点到渐近线的距离为,所以,解得,所以双曲线的焦距为4.故答案为4.【点睛】本题考查双曲线的几何性质,注意隐含条件,考查运算求解能力,属于基础题.13.设M=a+(2<a<3),,则M,N的大小关系为

.参考答案:M>N【考点】不等式比较大小.【专题】综合题;函数思想;综合法;不等式.【分析】由于M=a+=a﹣2++2(2<a<3)在(2,3)上单调递减,可得M>4,利用基本不等式可求得N的范围,从而可比较二者的大小.【解答】解:∵M=a+=a﹣2++2,而0<a﹣2<1,又∵y=x+在(0,1]上单调递减,∴M在(2,3)上单调递减,∴M>(3﹣2)++2=4;又0<x<,∴0<N=x(4﹣3x)=?3x(4﹣3x)≤2=.∴M>N故答案为:M>N.【点评】本题考查双钩函数函数的性质及基本不等式,关键在于合理转化,利用基本不等式解决问题,考查综合运用数学知识的能力,属于中档题.14.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=

参考答案:;

15.设等比数列{an}的前n项和为Sn,若S10:S5=1:2,则S15:S5=.参考答案:3:4【考点】等比数列的前n项和.【分析】本题可由等比数列的性质,每连续五项的和是一个等比数列求解,由题设中的条件S10:S5=1:2,可得出(S10﹣S5):S5=﹣1:2,由此得每连续五项的和相等,由此规律易得所求的比值.【解答】解:∵等比数列{an}的前n项和为Sn,若S10:S5=1:2,∴(S10﹣S5):S5=﹣1:2,由等比数列的性质得(S15﹣S10):(S10﹣S5):S5=1:(﹣2):4,∴S15:S5=3:4,故答案为:3:4.16.若复数为纯虚数,则t的值为

。参考答案:17.圆心在直线上,且与直线切于点的圆方程是__________________。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.等比数列{an}的前n项和为Sn,已知S1,S2,S3成等差数列,且a1﹣a3=3(1)求{an}的公比q及通项公式an;(2)bn=,求数列{bn}的前n项和Tn.参考答案:【考点】数列的求和;等比数列的通项公式.【专题】等差数列与等比数列.【分析】(1)依题意有,从而q=﹣,a1=4.由此能求出.(2)bn==,由此利用错位相减法能求出数列{bn}的前n项和Tn.【解答】解:(1)依题意有,∵a1≠0,∴2q2+q=0,∵q≠0,∴q=﹣,∴,解得a1=4.∴.(2)bn==,+…+n×(﹣2)n﹣1],﹣2Tn=[1×(﹣2)+2×(﹣2)2+3×(﹣2)3+…+n×(﹣2)n],两式相减,得:3Tn=[1+(﹣2)+(﹣2)2+…+(﹣2)n﹣1﹣n×(﹣2)n]=[],∴=.【点评】本题考查{an}的公比q及通项公式an的求法,考查数列{bn}的前n项和Tn的求法,是中档题,解题时要注意错位相减法的合理运用.19.(13分)在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.(Ⅰ)证明:AC⊥SB;(Ⅱ)求二面角N-CM-B的正切值;参考答案:解法一:(Ⅰ)取AC中点D,连结SD、DB.∵SA=SC,AB=BC,∴AC⊥SD且AC⊥BD,∴AC⊥平面SDB,又SB平面SDB,∴AC⊥SB.(Ⅱ)∵AC⊥平面SDB,AC平面ABC,∴平面SDB⊥平面ABC.过N作NE⊥BD于E,则NE⊥平面ABC,过E作EF⊥CM于F,连结NF,则NF⊥CM.∴∠NFE为二面角N-CM-B的平面角.∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.又∵NE⊥平面ABC,∴NE∥SD.∵SN=NB,∴NE=SD===,且ED=EB.在正△ABC中,由平几知识可求得EF=MB=,在Rt△NEF中,tan∠NFE==2,∴二面角N-CM-B的正切值为2.解法二:(Ⅰ)取AC中点O,连结OS、OB.∵SA=SC,AB=BC,∴AC⊥SO且AC⊥BO.∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC∴SO⊥面ABC,∴SO⊥BO.如图所示建立空间直角坐标系O-xyz.则A(2,0,0),B(0,2,0),C(-2,0,0),S(0,0,2),M(1,,0),N(0,,).∴=(-4,0,0),=(0,2,2),∵·=(-4,0,0)·(0,2,2)=0,∴AC⊥SB.(Ⅱ)由(Ⅰ)得=(3,,0),=(-1,0,).设n=(x,y,z)为平面CMN的一个法向量,则

·n=3x+y=0,

取z=1,则x=,y=-,∴n=(,-,1),·n=-x+z=0,又=(0,0,2)为平面ABC的一个法向量,∴cos(n,)==.二面角N-CM-B的正切值为2.20.(12分)已知函数.(1)求函数在[1,e]上的最大值、最小值(2)求证:在区间上,函数的图像在函数的图像下方.参考答案:(1),当时,所以在上为增函数,所以,。(2)证明:设,则=当时,,在上为减函数,且,故时,所以,所以在上,函数的图像在函数的图像下方。略21.(1)求证:;(2)设a,b均为正实数,求证:.参考答案:(1)详见解析;(2)详见解析【分析】(1)本题可通过对不等式两边同时平方并化简即可得出结果;(2)本题首先可通过基本不等式得出(当且仅当时取等号)以及(当且仅当时取等号),然后两者联立,即可证得不等式成立。【详解】(1),即,,,因为成立,所以成立。(2)根据基本不等式,首先有,当且仅当时取等号,再有,当且仅当时取等号,综上所述,,当且仅当时取等号,故不等式成立。【点睛】本题考查不等式的相关性质,主要考查基本不等式的应用,如果一个不等式的证明涉及到多处基本不等式的运用,那么每一处基本不等式的运用中取等号成立的条件一定要相同,考查推理能力,是中档题。22.(本小题满分12分)某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040506070如果y与x之间具有线性相关关系.(1)求这些数据的线性回归方程;(2)预测当广告费支出为9百万元时的销售额.(参考数据:=1390,=145)参考答案:解:(1)=5,=50,yi=1390,=145,········································2分=7,··························································································5分=15,·········

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论