版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江西省上饶市县第六中学高二数学理上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设命题;,则是的(
)
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.非充分非必要条件参考答案:A2.明年的今天,同学们已经毕业离校了,在离校之前,有三位同学要与语文、数学两位老师合影留恋,则这两位老师必须相邻且不站两端的站法有(
)种A.12
B.24
C.36
D.48参考答案:B由题意,三位同学全排列,共有种不同的排法,把两为老师看出一个元素,采用插空法,且要求不站在两端,插到三位同学构成的两个空隙中,共有种不同的排法,故选B.
3.设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为(
)
参考答案:C略4.下列命题为真命题的是()A.若,则B.若,则C.若,则
D.若,则参考答案:D5.下列说法中,正确的是(
)A.命题“若,则”的逆命题是真命题B.命题“,”的否定是:“,”C.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题D.已知,则“”是“”的充分不必要条件参考答案:B6.对某同学的6次数学测试成绩(满分100分)进行统计,作出的茎叶如图所示,给出关于该同学数学成绩的以下说法:①中位数为83;②众数为83;③平均数为85;④极差为12.其中正确说法序号是()A.①② B.③④ C.②③ D.①③参考答案:C【考点】众数、中位数、平均数.【专题】计算题;图表型;概率与统计.【分析】根据已知中的茎叶图,求出中位数,众数,平均数及极差,可得答案.【解答】解:由已知中茎叶图,可得:①中位数为84,故错误;②众数为83,故正确;③平均数为85,故正确;④极差为13,故错误.故选:C.【点评】本题考查的知识点是茎叶图,统计数据计算,难度不大,属于基础题.7.直线(,)过点(-1,-1),则的最小值为(
)A.9 B.1 C.4 D.10参考答案:A【分析】将点的坐标代入直线方程:,再利用乘1法求最值【详解】将点的坐标代入直线方程:,,当且仅当时取等号【点睛】已知和为定值,求倒数和的最小值,利用乘1法求最值。8.一个十字路口的交通信号灯,红灯、黄灯、绿灯亮的时间分别为秒、秒、秒,则某辆车到达路口,遇见绿灯的概率为(
)
A.
B.
C.
D.参考答案:B略9.等差数列中,,,则此数列前项和等于(
)A.
B.
C.
D.参考答案:B略10.曲线在点(-1,-3)处的切线方程是(
)A.
B.
C.
D.
参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为
.参考答案:;
12.已知圆和点则过点P的圆的最短弦所在直线的方程是
参考答案:x+y-2=013.如图正方体ABCD-A1B1C1D1中,与AD1异面且与AD1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.参考答案:1条与异面的面对角线分别为:、、、、,其中只有和所成的角为,故答案为1条.
14.设为实数,且,则___▲_____;参考答案:略15.某地教育部门为了解学生在数学答卷中的有关信息,从上次考试的10000名考生的数学试卷中,用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图4).则这10000人中数学成绩在[140,150]段的约是______人.参考答案:80016.某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如下图).根据频率分布直方图推测这3000名学生在该次数学考试中成绩小于60分的学生数是
。参考答案:60017.当时,函数的最小值是________。参考答案:
解析:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知26辆货车以相同速度v由A地驶向400千米处的B地,每两辆货车间距离为d千米,现已知d与v的平方成正比,且当v=20(千米/时)时,d=1(千米).(1)写出d与v的函数关系;(2)若不计货车的长度,则26辆货车都到达B地最少需要多少小时?此时货车速度是多少?参考答案:解析:(1)设d=kv2(其中k为比例系数,k>0),由v=20,d=1得k=∴d=
(2)∵每两列货车间距离为d千米,∴最后一列货车与第一列货车间距离为25d,∴最后一列货车达到B地的时间为t=,代入d=得t=≥2=10,当且仅当v=80千米/时等号成立。∴26辆货车到达B地最少用10小时,此时货车速度为80千米/时。19.已知A,B,C为△ABC的三内角,且其对边分别为a,b,c,若m=,n=,且m·n=.(1)求角A的大小;(2)若b+c=4,△ABC的面积为,求a的值.参考答案:(1)由m·n=得-2cos2+1=?cosA=-,所以A=120°.(2)由S△ABC=bcsinA=bcsin120°=,得bc=4,故a2=b2+c2-2bccosA=b2+c2+bc=(b+c)2-bc=12,所以a=2.20.设展开式中仅有第1010项的二项式系数最大.(1)求n;(2)求;(3)求.参考答案:(1)2018;(2)0;(3)4036【分析】(1)由二项式系数的对称性,可得展开式的项数,且1=1010,解得n.(2)令x=1,可得a0+a1+a2+…+a2018.(3)给原式两边同时求导后,再令,即可得出.【详解】(1)由二项式系数的对称性,得展开式共计2019项,,.(2)的展开式中各项系数和为,令,可得,再令,可得,所以.(3)给原式两边同时求导得到当,令,得.【点睛】本题主要考查二项式定理的应用,关键是分析所给代数式的特点,通过给二项式的x赋值进行求解,考查了分析推理能力与计算能力,属于中档题.21.在平面直角坐标系xOy中,已知圆C:x2+y2=4和直线l:x=4,M为l上一动点,A1,A2为圆C与x轴的两个交点,直线MA1,MA2与圆C的另一个交点分别为P、Q.(1)若M点的坐标为(4,2),求直线PQ方程;(2)求证直线PQ过定点,并求出此定点的坐标.参考答案:【考点】直线和圆的方程的应用.【分析】(1)求出A1,A2的坐标,可求直线MA1的方程、直线MA2的方程,与圆的方程联立,求出P,Q的坐标,由两点式求直线PQ方程;(2)设M(4,t),则直线MA1的方程:,直线MA2的方程:,分别代入圆的方程,求出P,Q的坐标,分类讨论,确定直线PQ的方程,即可得出结论.【解答】(1)解:当M(4,2),则A1(﹣2,0),A2(2,0).直线MA1的方程:x﹣3y+2=0,解得.直线MA2的方程:x﹣y﹣2=0,解得Q(0,﹣2),由两点式可得直线PQ的方程为2x﹣y﹣2=0;(2)证明:设M(4,t),则直线MA1的方程:,直线MA2的方程:由得由得当时,,则直线PQ:化简得,恒过定点(1,0)当时,,直线PQ:x=1,恒过定点(1,0)故直线PQ过定点(1,0).…22.已知函数.(1)若在区间(-∞,2)上为单调递增函数,求实数a的取值范围;(2)若,设直线为函数f(x)的图象在处的切线,求证:.参考答案:(1);(2)见解析试题分析:(1)求出函数的导函数,通过对恒成立,推出,即可求出的范围;(2)利用,化简,通过函数在处的切线方程为,讨论当时,;当时,利用分析法证明;构造函数,求出,构造新函数,利用公式的导数求解函数的最值,然后推出结论.试题解析:(1)解易知f′(x)=-,由已知得f′(x)≥0对x∈(-∞,2)恒成立,故x≤1-a对x∈(-∞,2)恒成立,∴1-a≥2,∴a≤-1.即实数a的取值范围为(-∞,-1].(2)证明a=0,则f(x)=.函数f(x)的图象在x=x0处的切线方程为y=g(x)=f′(x0)(x-x0)+f(x0).令h(x)=f(x)-g(x)=f(x)-f′(x0)(x-x0)-f(x0),x∈R,则h′(x)=f′(x)-f′(x0)=-=.设φ(x)=(1-x)ex0-(1-x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个性化监护职责合同模板(2024年版)版B版
- 2025年冀教版七年级科学上册阶段测试试卷含答案
- 2025年粤教版必修1地理上册阶段测试试卷含答案
- 2025年度铁路行李包裹运输服务质量提升方案合同3篇
- 2025年教科新版八年级英语下册阶段测试试卷含答案
- 2025年北师大新版选择性必修3生物下册月考试卷含答案
- 2025年沪科版七年级地理下册阶段测试试卷含答案
- 2025年人教新起点七年级物理下册阶段测试试卷含答案
- 2024文化活动策划服务合同范本
- 2025年鲁教新版九年级地理上册阶段测试试卷
- 2024年山东省淄博市中考数学试卷(附答案)
- 车辆火灾应急处置
- 快递进港客服培训课件
- 给志愿者培训
- 2023年贵州黔东南州州直机关遴选公务员笔试真题
- 心脑血管疾病预防课件
- 中药饮片验收培训
- DB35T 1036-2023 10kV及以下电力用户业扩工程技术规范
- 中国移动自智网络白皮书(2024) 强化自智网络价值引领加速迈进L4级新阶段
- 亚马逊合伙运营协议书模板
- 2024年6月青少年机器人技术等级考试理论综合-三级试题(真题及答案)
评论
0/150
提交评论