2023版新教材高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理同步练习1分类加法计数原理与分步乘法计数原理新人教A版选择性必修第三册_第1页
2023版新教材高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理同步练习1分类加法计数原理与分步乘法计数原理新人教A版选择性必修第三册_第2页
2023版新教材高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理同步练习1分类加法计数原理与分步乘法计数原理新人教A版选择性必修第三册_第3页
2023版新教材高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理同步练习1分类加法计数原理与分步乘法计数原理新人教A版选择性必修第三册_第4页
2023版新教材高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理同步练习1分类加法计数原理与分步乘法计数原理新人教A版选择性必修第三册_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

同步练习1分类加法计数原理与分步乘法计数原理必备知识基础练一、单项选择题(每小题5分,共40分)1.[2023·黑龙江齐齐哈尔高二期中]完成一项工作,有两种方法,有6个人只会用第一种方法,另外有4个人只会用第二种方法,从这10个人中选1个人完成这项工作,则不同的选法共有()A.6种B.10种C.4种D.60种2.欢欢同学从4本漫画书和5本绘本书中各任选1本出来参加义卖活动,则不同的选法共有()A.7种B.9种C.12种D.20种3.[2023·安徽池州高二期中]“声东击西”是游击战争的一种战术:声东可以击东、南、西、北中的任意一个方向,以此灵活地打击或消灭敌人.同样还有“声南击北”等不同的战术,由此可知这类战术中打击或消灭敌人的方法总数为()A.16B.12C.4D.34.[2023·湖南衡阳高二期中]某体育用品店有5款不同的篮球、4款不同的排球,某人要买一个篮球和一个排球,不同的选法有()A.9种B.10种C.20种D.36种5.从甲地到乙地有3种走法,从乙地到丙地有2种走法,若从甲地到达丙地必须经过乙地,则从甲地到丙地的不同走法的种数为()A.5B.6C.8D.126.[2023·辽宁抚顺高二期中]现有3幅不同的油画,4幅不同的国画,5幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有()A.10种B.12种C.20种D.60种7.已知两条异面直线a,b上分别有4个点和7个点,则这11个点可以确定不同的平面个数为()A.4B.7C.11D.1268.[2023·河南开封高二期末]某选秀节目报名即将开始,选手们可通过拨打热线电话或登录官网两种方式之一来报名.现有甲、乙、丙三人均要报名参加,则不同的报名方法有()A.4种B.6种C.8种D.9种二、多项选择题(每小题5分,共10分)9.如图,标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递消息,信息可以分开沿不同的路线同时传递,小圆圈表示网络的结点,结点之间的连线表示他们有网线相连,则单位时间内传递的信息量可以为()A.18B.19C.24D.2610.有一项活动,需在3名老师、8名男学生和5名女学生中选人参加,则下列结论正确的是()A.若只需1人参加,则有16种不同的选法B.若需老师、男学生、女学生各1人参加,则有16种不同的选法C.若需老师、男学生、女学生各1人参加,则有120种不同的选法D.若需1名老师、1名学生参加,则有16种不同的选法三、填空题(每小题5分,共10分)11.[2023·辽宁阜新高二期末]某学校开设4门球类运动课程、5门田径类运动课程和2门水上运动课程供学生学习,某位学生任选1门课程学习,则不同的选法共有________种.12.[2023·河北唐山高二期中]某人有5件不同的衬衫,6条不同的裤子.1件上衣和1条裤子为一种搭配,则搭配方法共有________种.四、解答题(共20分)13.(10分)有三个袋子,第一个袋子装有标号1~20的红色小球20个,第二个袋子装有标号1~15的白色小球15个,第三个袋子装有标号1~8的蓝色小球8个.(1)从三个袋子中取一个小球,共有多少种不同的取法?(2)从每个袋子中各取一个小球,共有多少种不同的取法?14.(10分)[2023·山西晋中高二期中]书架的第一层放有6本不同的语文书,第2层放有5本不同的数学书,第3层放有4本不同的外语书.(1)从书架中任取1本书,共有多少种不同的取法?(2)从书架中的第1,2,3层各取1本书,共有多少种不同的取法?关键能力综合练15.(5分)[2023·湖北孝感高二期中]3个班分别从4个景点中选择一处游览,不同选法的种数是()A.34B.43C.12D.16[答题区]题号1234567891015答案16.(15分)为了确保电子邮箱的安全,在注册时,通常要设置电子邮箱密码.(1)若密码为4位,每位均为0~9这10个数字中的1个,则这样的密码共有多少个?(2)若密码为4~6位,每位均为0~9这10个数字中的1个,则这样的密码共有多少个?同步练习1分类加法计数原理与分步乘法计数原理1.解析:根据分类加法计数原理可知,不同的选法共有6+4=10(种).答案:B2.解析:根据分步乘法计数原理可知,不同的选法共有4×5=20(种).答案:D3.解析:根据题意,声的情况有4种,击的情况也有4种,所以这类战术中打击或消灭敌人的方法总数为4×4=16.答案:A4.解析:第一步,从5款不同的篮球中选一个,有5种选法;第二步,从4款不同的排球中选一个,有4种选法;故不同的选法为5×4=20(种).答案:C5.解析:由分步乘法计数原理可知,从甲地到丙地的不同的走法种数为2×3=6.答案:B6.解析:分三类:第一类,从3幅不同的油画中任选一幅,有3种;第二类,从4幅不同的国画中任选一幅,有4种;第三类,从5幅不同的水彩画中任选一幅,有5种.根据分类加法计数原理得共有3+4+5=12(种)不同的选法.答案:B7.解析:分两类情况讨论:第一类,直线a分别与直线b上的7个点可以确定7个不同的平面;第二类,直线b分别与直线a上的4个点可以确定4个不同的平面.根据分类加法计数原理知,共可以确定7+4=11(个)不同的平面.答案:C8.解析:由题意,每人选择的方式有2种,根据分步乘法计数原理,可得不同的报名方法有2×2×2=8(种).答案:C9.解析:第一条线路单位时间内传递的最大信息量为3;第二条线路单位时间内传递的最大信息量为4;第三条线路单位时间内传递的最大信息量为6;第四条线路单位时间内传递的最大信息量为6.因此该段网线单位时间内可以通过的最大信息量为3+4+6+6=19.答案:AB10.解析:由题意,有一项活动,需在3名老师、8名男学生和5名女学生中选人参加,共有16人,若只需1人参加,由分类加法计数原理,可得有3+8+5=16(种)不同的选法,所以A正确;若需老师、男学生、女学生各1人参加,由分步乘法计数原理,可得有3×8×5=120(种)不同的选法,所以B错误,C正确;若需1名老师、1名学生参加,由分步乘法计数原理,可得有3×13=39(种)不同的选法,所以D错误.答案:AC11.解析:根据分类加法计数原理得不同的选法共有4+5+2=11(种).答案:1112.解析:依题意有5×6=30(种)搭配方法.答案:3013.解析:(1)从三个袋子里选取一个小球,有20+15+8=43(种)不同的选法.(2)从每个袋子里选取一个小球,有20×15×8=2400(种)不同的选法.14.解析:(1)从书架上任取1本书,有三类方案:第1类,从第1层取1本语文书,有6种方法;第2类,从第2层取1本数学书,有5种方法;第3类,从第3层取1本外语书,有4种方法.根据分类加法计数原理,不同取法的种数为6+5+4=15(种).(2)从书架的第1层、第2层、第3层各取1本书,可以分三步完成:第1步,从第1层取1本语文书,有6种方法;第2步,从第2层取1本数学书,有5种方法;第3步,从第3层取1本外语书,有4种方法.根据分步乘法计数原理,不同取法的种数为6×5×4=120(种).15.解析:每个班有4种不同选择,共有43种不同选法.答案:B16.解析:(1)设置1个4位密码要分4步进行,每一步确定一位数字,每一位上都可以从0~9这10个数字中任取1个,有10种取法.根据分步乘法计数原理,4位密码的个数是1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论