线性代数(财经类) 课件 2.6矩阵的初等变换_第1页
线性代数(财经类) 课件 2.6矩阵的初等变换_第2页
线性代数(财经类) 课件 2.6矩阵的初等变换_第3页
线性代数(财经类) 课件 2.6矩阵的初等变换_第4页
线性代数(财经类) 课件 2.6矩阵的初等变换_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.6矩阵的初等变换矩阵的初等变换

矩阵的初等变换是矩阵的十分重要的运算

它在解线性方程组、求逆矩阵以及矩阵理论的研究中起着重要作用

这一节主要介绍矩阵的初等变换以及用初等变换求逆矩阵的方法.矩阵的初等变换定义10下面三种变换称为矩阵的初等行变换:

同理可定义矩阵的初等列变换(所用记号是把“r”换成“c”).矩阵的初等变换矩阵的初等列变换与初等行变换统称为初等变换.定义11(初等矩阵)

对单位矩阵I施以一次初等变换得到的矩阵

称为初等矩阵

(1)对I施以第(1)种初等变换得到的矩阵

矩阵的初等变换

(2)对I施以第(2)种初等变换得到的矩阵

(3)对I施以第(3)种初等变换得到的矩阵

矩阵的初等变换定理4(初等矩阵的作用)

设Am

n

(aij)m

n

(1)对A的行施以一次某种初等变换得到的矩阵

等于用同种的m阶初等矩阵左乘A

(2)对A的列施以一次某种初等变换得到的矩阵

等于用同种的n阶初等矩阵右乘A

矩阵的初等变换

初等矩阵都是可逆的

且它们的逆矩阵仍是初等矩阵

矩阵的初等变换等价关系的性质:具有上述三条性质的关系称为等价.矩阵的初等变换定理5

任意一个矩阵Am

n

(aij)m

n经过若干次初等变换

可以化为下面形式的矩阵D

矩阵D称为矩阵A的等价标准形

推论2如果A为n阶可逆矩阵

则D

In

矩阵的初等变换例39求矩阵

的等价标准型矩阵的初等变换例40求矩阵的等价标准型矩阵的初等变换定理6(矩阵可逆的充要条件)

n阶矩阵A为可逆的充分必要条件是它可以表示为一些初等矩阵的乘积

求逆矩阵的方法:

如果A可逆,在A-1也可逆,由定理6,存在初等矩阵,使那么有即矩阵的初等变换求逆矩阵的初等行变换法

作一个n

2n的分块矩阵(A¦I)

然后对此矩阵施以仅限于行的初等变换

使子块A化为I

同时子块

I即化成A

1了

(1)式表示对A施以若干次初等行变换化为I,(2)式表示对I施以同样的初等行变换化为A-1.于是可以得出如下求逆矩阵的方法:矩阵的初等变换例41求矩阵的逆矩阵.解矩阵的初等变换

如果不知道矩阵A是否可逆

也可以用初等变换求逆矩阵的方法去判断

在分块矩阵(A¦I)中子块A处有一行的元素全为零

即子块A处化不成I

则A不可逆

例如子块A不能经初等变换化为I

所以A不可逆

矩阵的初等变换求逆矩阵的初等列变换法

作一个2n

n的分块矩阵

然后对此矩阵施以仅限于列的初等变换

使子块A化为I

同时子块I即化成A

1

即初等列变换矩阵的初等变换例42已知矩阵与同阶矩阵X满足,求X.解:由有所以可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论