18.1.1 第1课时 平行四边形的边角性质 课件 2023-2024学年八年级人教版数学_第1页
18.1.1 第1课时 平行四边形的边角性质 课件 2023-2024学年八年级人教版数学_第2页
18.1.1 第1课时 平行四边形的边角性质 课件 2023-2024学年八年级人教版数学_第3页
18.1.1 第1课时 平行四边形的边角性质 课件 2023-2024学年八年级人教版数学_第4页
18.1.1 第1课时 平行四边形的边角性质 课件 2023-2024学年八年级人教版数学_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十八章

平行四边形18.1.1第1课时

平行四边形的边角性质

如图:四边形ABCD是平行四边形记作:□ABCD(注意:顶点字母应按顺序书写.)读作:平行四边形ABCD.应用格式:

(1)∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.(2)∵四边形ABCD是平行四边形,∴

AD∥BC,AB∥DC.1.平行四边形定义:

两组对边分别平行的四边形叫做平行四边形.新知探索——平行四边形的概念ODCBABDAC2.平行四边形的组成对边:AB与CD,BC与AD(两组).邻边:AB与BC,BC与CD,CD与AD,AB与AD(四组).对角:∠A与∠C,∠B与∠D(两组).邻角:∠A与∠B;∠B与∠C;∠C与∠D;∠D与∠A(四组).对角线:AC、BD(两条对角线).已知:如图,

四边形ABCD是平行四边形.则有:3.平行四边形的性质:BDACo性质1:平行四边形的两组对边平行.性质3:平行四边形的邻角互补.性质2:平行四边形的对边相等.性质4:平行四边形的对角相等.AB∥CD,BC∥AD∠A+∠B=1800,∠B+∠C=1800AB=CD,BC=AD∠A=∠C,∠B=∠D证明:连结BD,∵四边形ABCD是平行四边形∴AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4∵BD=DB∴△ABD≌△CDB(ASA)∴AD=CB,AB=CD,∠A=∠C∵∠1=∠2,∠3=∠4∴∠1+∠4=∠2+∠3,即∠ABC=∠ADC∴AD=CB,AB=CD,∠A=∠C,∠ABC=∠ADC12DCBA34【性质证明】已知:如图,四边形ABCD是平行四边形.

求证:AD=CB,AB=CD,∠A=∠C,∠ABC=∠ADC.

例1.如图,在□ABCD中,∠A=500,AB=5,周长为28.(1)求其余三个内角的度数;(2)求其余三条边的长.

DCBA解:(1)∵□ABCD中,∠A=50°∴∠C=∠A=500,且AD∥BC∴∠A+∠B=1800则∠B=1800-∠A=1800-500=1300∴∠D=∠B=1300(2)∵□ABCD中,AB=5

∴CD=AB=5,∵AB+BC+CD+AD=28∴5+BC+5+AD=28

即BC+AD=18∵BC=AD∴BC=AD=9.例2.在□ABCD中,∠C-∠B=500,求∠A,∠B,∠C的度数.例3.

在□ABCD中,若周长为44cm,AB比BC短2cm,求这个平行四边形各边的长.DCBA∠A=1150,∠B=650,∠C=1150.∠C+∠B=1800∠C-∠B=500BC+AB=22BC-AB=2AB=10BC=12例4.

如图,在□ABCD中,AE平分∠BAD交BC边于E,(1)若∠C=1300,求∠BAE的度数;(2)若AD=5,AB=3,求线段BE和EC的长.

EDCBA(1)∠BAE=650,(2)BE=AB=3,EC=2例5.

如图,□ABCD的周长为36cm,AB:BC=1:2,∠B:∠C=1:2,E是BC边的中点,求AE的长.DCBAEAE=6例6.如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成一个四边形,则线段AD和BC的长度有什么关系?DCBA3.如图,在平面直角坐标系中,□OBCD的顶点O、B、D的坐标如图所示,则顶点C的坐标为().A.(3,7)B.(5,3)C.(7,3)D.(8,2)xyCO(0,0)B(5,0)D(2,3)C4.如图,□ABCD中,CE⊥AB于E,若∠A=1250,则∠BCE=

.BCDA□E3505.如图,在□ABCD中,若AE平分∠BAD,则ED=

.E5cm9cmABCD5cm6.已知:如图,AC是□ABCD的对角线,BE⊥AC于E,DF⊥AC于F.求证:BE=DF.ABCD□□FE证明:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC∴∠1=∠2∵BE⊥AC,DF⊥AC

∴△ABD≌△CDB(ASA)∴AD=CB,AB=CD,∠A=∠C∵∠1=∠2,∠3=∠4∴∠1+∠4=∠2+∠3,即∠ABC=∠ADC∴AD=CB,AB=CD,∠A=∠C,∠ABC=∠ADC12347.如图,从等腰三角形底边上任一点,分别作两腰的平行线,所成的四边形的周长与它的两腰长之和之间的关系如何?请说明理由.DCBAEF将一张纸对折,剪下两张叠放的三角形纸片.将它们相等的一组边重合,得到一个四边形.(1)你拼出了怎样的四边形?(2)小明拼出了如图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.活动ABDCOABDCO【活动①:做一做,想一想】

如图,把两张完全相同的平行四边形纸片叠合在一起,在它们的中心O钉一个图钉,

将一个平行四边形绕O旋转1800,你发现了什么?新知探索——平行四边形的性质●ADOCBDBOCA归纳结论2.平行四边形的对角线互相平分.1.□ABCD绕它的中心O旋转1800后与自身重合,这时称□ABCD是中心对称图形,点O叫对称中心.

【问题】怎么证明对角线互相平这个结论?再看一遍中心对称图形:如果一个图形绕某个点旋转1800,能跟自身重合,那么这个图形叫做中心对称图形,这个旋转点叫做对称中心.已知:如图,□ABCD的对角线

AC、BD相交于点O.求证:OA=OC,OB=OD.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠1=∠2,∠3=∠4∴△AOD≌△COB(ASA)∴OA=OC,OB=OD.ACDBo3241平行四边形“对角线互相平分”的证明.应用格式∵四边形ABCD是平行四边形∴OA=OC,OB=OD.【归纳】平行四边形的性质:平行四边形的对角线互相平分.BACDo平行四边形的性质小结:①边:平行四边形的对边平行;

平行四边形的对边相等;②角:平行四边形的对角相等;

平行四边形的邻角互补;③对角线:平行四边形的对角线互相平分.④对称性:平行四边形是中心对称图形.1047例1.如图,在□ABCD中,BC=10cm,AC=8cm,BD=14cm,(1)△BOC的周长是多少?说明理由?(2)△ABC与△DBC的周长哪个长?长多少?三、实例分析例2.如图,□ABCD的周长为80cm,对角线AC与BD相交于点O,△AOB

的周长比△AOD

的周长小20cm,求这个平行四边形各边的长.例2.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长及ABCD的面积.∴在Rt△ABC中,由勾股定理得又∵AC⊥BC,则∠ACB=900解:∵四边形ABCD是平行四边形∴BC=AD=8,CD=AB=10又∵OA=OC,∴S□ABCD=BC×AC=8×6=48

810BCDAO●例3.在□ABCD中,∠ABC=700,BE平分∠ABC且交AD于点E,DF∥BE且交BC于点F,求∠CDF的度数.∴∠1=∠2=350∵BE平分∠ABC解:∵四边形ABCD是平行四边形,∠ADC=700∴∠C=1800-∠ADC=1100∴∠4=1800-∠3-∠C∴∠3=∠2=350∵DF∥BE=1800-350-1100=350即∠CDF=350.12FEDCBA43例4.□ABCD的对角线AC、BD相交于O,直线EF过点O

与AD、BC分别相交于E、F.求证:OE=OF.FEODCBA例5.如图,□ABCD中,AE、AF分别为BC、CD上的高,AE=2,AF=5,∠EAF=300,求平行四边形周长和面积.FEDCBA□□练习1.在□ABCD中,AE⊥BC于E,AF⊥CD于F,(1)若AE=3,AF=4,AD=8,求CD的长;(2)若∠EAF=600,求□ABCD各内角的度数.FEDCBA例6.一位老人想把一块平行四边形的土地,平均分给他的四个孩子,当孩子们看到如图所示的分配方案时,都认为自己的地少.你认为老人这样分合理吗?为什么?

老大老二老三老四ACDBo●S1S4S3S2M1.平行四边形具有而一般四边形不具有的特征是().A.不稳定性 B.对角线互相平分

C.内角的为360度 D.外角和为360度2.若平行四边形的一边长为5,则它的两条对角线长可以是().A.12和2

B.3和4

C.4和6D.4和8BD课堂练习3.如图,在□ABCD中,对角线AC,BD交于点O,AC=8,BD=10,则AD的取值范围是

.4.如上图,在□ABCD中,对角线AC﹑BD相交于点O,

且AC+BD=20,△AOB的周长等于15,则CD=

.1<AD<955.如上图,在□ABCD中,对角线AC﹑BD相交于点O,

△AOB

的周长为15,AB=6,那么对角线AC和BD的和是

.ODCBA223.如图,在□ABCD中,∠BAD的平分线AE分BC成4与

3的两条线段,则□ABCD的周长是

.22或202.平行四边形两邻边分别为20cm和16cm,若两较长边的距离为6,则两较短边的距离为

.7.5cmDCBAE4.已知三条线段的长分别是20cm、16cm、18cm,则以

两条为对角线,其余一条为边,可以画出平行四边形.20cm,18cm4.如图,在周长为20cm的□ABCD中,AB≠AD.对角线

AC与BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为

.10cmOEDCBA平行四边形的性质共有哪些?本课小结平行四边形的性质①边:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论