版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省南阳市油田第二中学2022年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,对于任意的实数不等式恒成立,则k的取值范围是(
)A.(-∞,6)
B.(-∞,6]
C.(-∞,7)
D.(-∞,7]参考答案:B2.直线xsinθ+y+2=0的倾斜角的取值范围是()A.[,] B.[,] C.[0,]∪[,π) D.[0,]∪,π]参考答案:C【考点】I2:直线的倾斜角.【分析】先求出直线斜率的取值范围,进而利用三角函数的单调性可求出直线倾斜角的取值范围.【解答】解:∵直线xsinθ+y+2=0,∴y=﹣x﹣,∴直线的斜率k=﹣.又∵xsinθ+y+2=0倾斜角为α,∴tanα=﹣.∵﹣1≤﹣sinθ≤1,∴﹣≤﹣≤.∴﹣≤tanα≤.∴α∈[0,]∪[,π).故选:C.【点评】熟练掌握直线的斜率和三角函数的单调性即值域是解题的关键,基本知识的考查.3.设,则的值为()A.0
B.
C.
D.参考答案:A略4.在中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且=(
)A. B. C. D.2参考答案:C5.用更相减损术得111与148的最大公约数为()A.1 B.17 C.23 D.37参考答案:D【考点】用辗转相除计算最大公约数.【专题】计算题;综合法;推理和证明.【分析】用更相减损术求111与148的最大公约数,先用大数减去小数,再用减数和差中较大的数字减去较小的数字,这样减下去,知道减数和差相同,得到最大公约数.【解答】解:用更相减损术求111与148的最大公约数.148﹣111=37,111﹣37=7474﹣37=37,∴111与148的最大公约数37,故选:D.【点评】本题考查辗转相除法和更相减损术,这是案例中的一种题目,这种题目解题时需要有耐心,认真计算,不要在数字运算上出错.6.参考答案:B7.已知f′(x)是函数f(x)=(x2﹣3)ex的导函数,在区间[﹣2,3]任取一个数x,则f′(x)>0的概率是(
) A. B. C. D.参考答案:A考点:几何概型;导数的运算.专题:概率与统计.分析:由题意,首先求出使f′(x)>0的x的范围,然后由几何概型的公式求之.解答: 解:由已知f′(x)=ex(x2+2x﹣3)>0,解得x<﹣3或者x>1,由几何概型的公式可得f′(x)>0的概率是;故选:A.点评:本题考查了函数求导以及几何概型的运用;正确求出函数的导数,正确解不等式是关键;属于基础题.8.函数f(x)=ax﹣x3(a>0,且a≠1)恰好有两个不同的零点,则实数a的取值范围是()A.1<a<e B.1<a<eC.0<a<e D.e<a<e参考答案:A【考点】利用导数研究函数的单调性.【分析】原题意等价于方程ax=x3恰有两个不同的解.分类讨论结合函数思想求解当0<a<1时,y=ax与y=x3的图象只有一个交点,不符合题意.当a>1时,y=ax与y=x3的图象在x∈(﹣∞,0)上没有交点,所以只考虑x>0,于是可两边同取自然对数,得xlna=3lnx,即lna=,构造函数g(x)=,求解,利用导数求解即可.【解答】解:∵f(x)=ax﹣x3(a>0,且a≠1)恰好有两个不同的零点∴等价于方程ax=x3恰有两个不同的解.当0<a<1时,y=ax与y=x3的图象只有一个交点,不符合题意.当a>1时,y=ax与y=x3的图象在x∈(﹣∞,0)上没有交点,所以只考虑x>0,于是可两边同取自然对数,得xlna=3lnx,即lna=,令g(x)=,则,当x∈(0,e)时,g(x)单调递增,当x<1时,当g(x)<0,x∈(e,+∞)时,g(x)单减且g(x)>0.∴要有两个交点,0<lna<g(e)=,即1<a<.故选:A9.在正方体ABCD﹣A1B1C1D1中,直线AB1与平面ABC1D1所成的角的正弦值为()A. B. C. D.参考答案:D【考点】直线与平面所成的角.【分析】如图所示,建立空间直角坐标系.不妨时AB=1,取平面ABC1D1的法向量==(1,0,1),则直线AB1与平面ABC1D1所成的角的正弦值=|cos<,>|=,即可得出.【解答】解:如图所示,建立空间直角坐标系.不妨时AB=1,则D(0,0,0),A(1,0,0),B1(1,1,1),A1(1,0,1).则=(0,1,1),取平面ABC1D1的法向量==(1,0,1),则直线AB1与平面ABC1D1所成的角的正弦值=|cos<,>|===.故选:D.【点评】本题考查了空间位置关系、法向量的应用、线面角、向量夹角公式,考查了推理能力与计算能力,属于中档题.10.如图,四边形中,,,.将四边形沿对角线折成四面体,使平面平面,则下列结论正确的是
(
).A.
B.C.与平面所成的角为
D.四面体的体积为参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.当时,下面的程序段输出的结果是_____________;IF
THENelsePRINTy参考答案:612.函数在(0,1)内有极小值,则实数b的取值范围是___________.参考答案:13.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第100个图形由多少个点组成(
)
A.9901
B.9902
C.9903
D.9900参考答案:A14.若,且,则的取值范围是_________.参考答案:15.设函数,,则的最大值为____________,最小值为___________.参考答案:16.在中,,则_____________.参考答案:17.椭圆+y2=1上一点P,M(1,0),则|PM|的最大值为
.参考答案:1+
【分析】设出椭圆上任意一点的参数坐标,由两点间的距离公式写出|PM|,利用配方法通过三角函数的有界性求其最大值.【解答】解:∵椭圆+y2=1,设P点坐标是(cost,sint)则|PM|====|cost﹣|∈[,1+].∴当cost=﹣1时,|PM|取得最大值为:1.故答案为:1+.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.命题p:关于x的不等式对一切恒成立;命题q:函数在(0,+∞)上递增若为真,而为假,求实数a的取值范围。参考答案:19.已知点O(0,0),A(1,2),B(4,5),且=+t(t∈R),求:(1)t为何值时,点P在x轴上?(2)四边形OABP能否成为平行四边形?若能,求出相应的t值;若不能,请说明理由.参考答案:20.(本小题满分10分)选修4-1:几何证明选讲如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.参考答案:(Ⅰ)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.由于AF垂直EP,所以∠PFA=90°,于是∠BDA=90°,故AB是直径.(Ⅱ)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°,在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于于是ED是直径,由(Ⅰ)得ED=AB.21.已知双曲线C:﹣=1(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线C的方程;
(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】(1)由离心率为,实轴长为2.可得,2a=2,再利用b2=c2﹣a2=2即可得出.(2)设A(x1,y1),B(x2,y2),与双曲线的联立可得x2﹣2mx﹣m2﹣2=0,利用根与系数的关系可得|AB|===4,即可得出.【解答】解:(1)由离心率为,实轴长为2.∴,2a=2,解得a=1,,∴b2=c2﹣a2=2,∴所求双曲线C的方程为=1.(2)设A(x1,y1),B(x2,y2),联立,△>0,化为m2+1>0.∴x1+x2=2m,.∴|AB|===4,化为m2=1,解得m=±1.22.某工厂为了安排生产任务,需要确定加工零件所花费的时间,为此作了四次试 验,得到的数据如下:零件的个数x(件)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测生产10个零件需要多少时间参考答案:(1)由题意可得列联表如下:(5分)年龄层次赞成“留欧”反对“留欧”合计18
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生创新创业教程-课件 【ch06】创业项目开办
- 债务重组合同协议书范本
- 钢管架施工临时用电供应合同20242篇
- 沙石供应协议格式范本
- 2024年度服装行业大数据应用合作协议
- 第课时教育课件
- 课件背景图片下载
- 2024版钢筋工程合同纠纷调解服务合同2篇
- 二零二四年度生态环境治理与保护合作协议
- 2024版给排水安装工程分包商维护保养合同2篇
- 四川省绵阳市三台县2024-2025学年高二上学期期中考试历史试题 含解析
- 《司法鉴定工作实务》课件
- 二年级上册数学教案-第七单元认识时间(7课时) 人教新课标
- 2024-2030年中国海砂淡化开采产业未来发展趋势及投资策略分析报告
- 国家自然科学基金申请书模板三篇
- 2024年防汛物资购销合同范本
- DB14-T 1811-2019 旅游景区民俗燃香基本要求
- 2024-2025学年初中生物学七年级下册(2024)北师大版(2024)教学设计合集
- 期中测试卷(1-5单元)(试题)-2024-2025学年三年级上册数学人教版
- 24.1.3 弧、弦、圆心角 人教版数学九年级上册教案
- GB/T 13477.25-2024建筑密封材料试验方法第25 部分:耐霉菌性的测定
评论
0/150
提交评论