湖南省岳阳市县三荷乡平地中学2022-2023学年高二数学理期末试卷含解析_第1页
湖南省岳阳市县三荷乡平地中学2022-2023学年高二数学理期末试卷含解析_第2页
湖南省岳阳市县三荷乡平地中学2022-2023学年高二数学理期末试卷含解析_第3页
湖南省岳阳市县三荷乡平地中学2022-2023学年高二数学理期末试卷含解析_第4页
湖南省岳阳市县三荷乡平地中学2022-2023学年高二数学理期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省岳阳市县三荷乡平地中学2022-2023学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.等差数列的前项和为,且,则公差等于(

)A.

B.

C.

D.参考答案:C2.抛物线的焦点到准线的距离为(

)A.

B.

C.2

D.4参考答案:B3.下列函数中,与函数有相同定义域的是A. B. C. D.参考答案:A试题分析:的定义域为,的定义域为选A.考点:函数的定义域.4.若直线y=2x上存在点(x,y)满足约束条件则实数m的最大值为()A.-1

B.1

C.

D.2参考答案:B5.如果执行右边的程序框图,那么输出的S等于

)A、2550

B、2500

C、2450

D、2652参考答案:A略6.抛掷两枚均匀骰子,观察向上的点数,记事件A为“两个点数不同”,事件B为“两个点数中最大点数为4”,则()A. B. C. D.参考答案:C【分析】抛掷两枚均匀骰子,构成的基本事件的总数共有36种,其中记事件为“两个点数不同”的基本事件共有30种,再由“两个点数不同且最大点数为4”的基本事件共有6种,利用条件概率的计算公式,即可求解.【详解】由题意,抛掷两枚均匀骰子,构成的基本事件的总数共有36种,其中记事件为“两个点数不同”的基本事件共有种,又由事件“两个点数不同且最大点数为4”的基本事件为:,共有6种,所以,故选C.【点睛】本题主要考查了条件概率的计算,其中解答中熟记条件概率的计算方法,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.7.已知点F(﹣c,0)(c>0)是双曲线的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于点P,且点P在抛物线y2=4cx上,则e2=(

)A. B. C. D.参考答案:D【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用抛物线的性质、双曲线的渐近线、直线平行的性质、圆的性质、相似三角形的性质即可得出.【解答】解:如图,设抛物线y2=4cx的准线为l,作PQ⊥l于Q,设双曲线的右焦点为F′,P(x,y).由题意可知FF′为圆x2+y2=c2的直径,∴PF′⊥PF,且tan∠PFF′=,|FF′|=2c,满足,将①代入②得x2+4cx﹣c2=0,则x=﹣2c±c,即x=(﹣2)c,(负值舍去)代入③,即y=,再将y代入①得,=e2﹣1即e2=1+=.故选:D.【点评】本题考查双曲线的性质,掌握抛物线的性质、双曲线的渐近线、直线平行的性质、圆的性质是解题的关键.8.为了评价某个电视栏目的改革效果,在改革前后分别从某居民点抽取了1000位居民进行调查,经过计算得K24.358,根据这一数据分析,下列说法正确的是

A.有95%的人认为该栏日优秀

B.有95%的人认为该栏目是否优秀与改革有关系

C.有95%的把握认为电视栏目是否优秀与改革有关系

D.没有理由认为电视栏目是否优秀与改革有关系参考数据如下表:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

参考答案:C9.如图⑴、⑵、⑶、⑷为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为(

)A.三棱台、三棱柱、圆锥、圆台

B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台

D.三棱柱、三棱台、圆锥、圆台参考答案:C10.已知集合则=(

)A.

B.

C.

D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.函数f(x)=lnx-x的单调递增区间为________.参考答案:(0,1)12.dx=. 参考答案:【考点】定积分. 【专题】导数的概念及应用. 【分析】根据微积分基本定理计算即可. 【解答】解:dx== 故答案为:. 【点评】本题考查定积分,本题解题的关键是写出要积分的函数的原函数,本题是一个基础题 13.函数的单调递增区间是

.参考答案:略14.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析。运用系统抽样方法抽取样本时,每组的容量为

。参考答案:2515.函数f(x)=+的定义域为

.

参考答案:(-1,0)∪(0,2]16.如图,四边形ABCD为矩形,,BC=1,以A为圆心,1为半径作四分之一个圆弧DE,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率是.参考答案:【考点】概率的基本性质;几何概型.【专题】计算题.【分析】由题意知本题是一个几何概型,解决几何概型问题时,看清概率等于什么之比,试验包含的所有事件是∠BAD,而满足条件的事件是直线AP在∠CAB内时AP与BC相交时,即直线AP与线段BC有公共点,根据几何概型公式得到结果.【解答】解:由题意知本题是一个几何概型,试验包含的所有事件是∠BAD,如图,连接AC交弧DE于P,则,∴∠CAB=30°,满足条件的事件是直线AP在∠CAB内时AP与BC相交时,即直线AP与线段BC有公共点∴概率P=,故答案为:【点评】本题考查了几何摡型知识,古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到.17.若椭圆两焦点为F1(﹣4,0),F2(4,0)点P在椭圆上,且△PF1F2的面积的最大值为12,则此椭圆的方程是.参考答案:考点:椭圆的标准方程;椭圆的简单性质.专题:计算题.分析:先设P点坐标为(x,y),表示出△PF1F2的面积,要使三角形面积最大,只需|y|取最大,因为P点在椭圆上,所以当P在y轴上,此时|y|最大,故可求.解答:解:设P点坐标为(x,y),则,显然当|y|取最大时,三角形面积最大.因为P点在椭圆上,所以当P在y轴上,此时|y|最大,所以P点的坐标为(0,±3),所以b=3.∵a2=b2+c2,所以a=5∴椭圆方程为.故答案为点评:本题的考点是椭圆的标准方程,主要考查待定系数法求椭圆的方程,关键是利用△PF1F2的面积取最大值时,只需|y|取最大三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在边长为60cm的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

参考答案:解:设箱底的边长为xcm,箱子的容积为V,则ks5uV=x2?=-+30x2=-+60x当=0时,x=40或x=0(舍去),x=40是函数V的唯一的极值点,也就是最大值点,当x=40时,V=16000所以,当箱底的边长是40cm时,箱子的容积最大,最大容积是16000cm3。略19.设函数f(x)=2sinxcos2+cosxsinφ﹣sinx(0<φ<π)在x=π处取最小值.(I)求?的值,并化简f(x);(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f(A)=,求角C.参考答案:【考点】三角函数的最值;三角函数中的恒等变换应用;正弦定理.【分析】(I)由条件利用三角恒等变换,化简函数的解析式,再利用诱导公式求得φ的值,可得函数的解析式.(II)由条件求得A,再利用正弦定理求得sinB的值,可得B,再利用三角形内角和公式求得C的值.【解答】解:(I)∵=sinx+sinxcosφ+cosxsinφ﹣sinx=sinxcosφ+cosxsinφ=sin(x+φ),因为函数f(x)在x=π处取最小值,所以sin(π+φ)=﹣1,由诱导公式知sinφ=1,因为0<φ<π,所以,所以.(II)因为,所以,因为角A为△ABC的内角,所以.又因为,所以由正弦定理,得,也就是,因为b>a,所以或.当时,;

当时,.20.(1)已知圆(x+2)2+y2=1过椭圆C的一个顶点和焦点,求椭圆C标准方程.(2)已知椭圆的离心率为,求k的值.参考答案:解:(1)圆(x+2)2+y2=1与x轴的交点为(﹣1,0),(﹣3,0),由题意可得椭圆的一个焦点为(﹣1,0),一个顶点为(﹣3,0),设椭圆方程为+=1(a>b>0),可得a=3,c=1,b==2,即有椭圆的方程为+=1;(2)当焦点在x轴上时,椭圆+=1的a2=8+k,b2=9,c2=k﹣1,e2===,解得k=4;当焦点在y轴上时,椭圆+=1的b2=8+k,a2=9,c2=1﹣k,e2===,解得k=﹣.综上可得k=4或﹣.考点:椭圆的简单性质.专题:计算题;方程思想;分类法;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)求出圆与x轴的交点,可得椭圆的一个焦点和一个顶点,再由a,b,c的关系可得椭圆方程;(2)讨论焦点在x,y轴上,求得a,b,c,e,解方程可得k的值.解答:解:(1)圆(x+2)2+y2=1与x轴的交点为(﹣1,0),(﹣3,0),由题意可得椭圆的一个焦点为(﹣1,0),一个顶点为(﹣3,0),设椭圆方程为+=1(a>b>0),可得a=3,c=1,b==2,即有椭圆的方程为+=1;(2)当焦点在x轴上时,椭圆+=1的a2=8+k,b2=9,c2=k﹣1,e2===,解得k=4;当焦点在y轴上时,椭圆+=1的b2=8+k,a2=9,c2=1﹣k,e2===,解得k=﹣.综上可得k=4或﹣.点评:本题考查椭圆的方程和性质,考查离心率的运用,同时考查圆的方程的运用,注意运用分类讨论的思想方法,属于中档题.21.甲方是一农场,乙方是一工厂.由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润(元)与年产量(吨)满足函数关系.若乙方每生产一吨产品必须赔付甲方元(以下称为赔付价格).(1)将乙方的年利润(元)表示为年产量(吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格是多少

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论