广东省广州市第三十一中学高二数学理下学期期末试卷含解析_第1页
广东省广州市第三十一中学高二数学理下学期期末试卷含解析_第2页
广东省广州市第三十一中学高二数学理下学期期末试卷含解析_第3页
广东省广州市第三十一中学高二数学理下学期期末试卷含解析_第4页
广东省广州市第三十一中学高二数学理下学期期末试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市第三十一中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知P是双曲线上一点,双曲线的一条渐近线方程为,F1,F2分别是双曲线的左右焦点,若|PF1|=5,则|PF2|等于(

)

A.

1或9

B.

5

C.

9

D.

13参考答案:C略2.在建立两个变量y与x的回归模型时,分别选择了4个不同的模型,这四个模型的相关系数R2分别为0.25、0.50、0.98、0.80,则其中拟合效果最好的模型是(

)A.模型1 B.模型2 C.模型3 D.模型4参考答案:C【分析】相关系数的绝对值越靠近1,拟合效果越好,据此得到答案.【详解】四个模型的相关系数分别为0.25、0.50、0.98、0.80相关系数的绝对值越靠近1,拟合效果越好故答案选C【点睛】本题考查了相关系数,相关系数的绝对值越靠近1,拟合效果越好.3.若△ABC中,sinA:sinB:sinC=2:3:4,那么cosC=()A.- B. C.D.参考答案:A考点;余弦定理.专题;计算题.分析;通过正弦定理求出,a:b:c=2:3:4,设出a,b,c,利用余弦定理直接求出cosC即可.解答;解:因为sinA:sinB:sinC=2:3:4所以a:b:c=2:3:4,设a=2k,b=3k,c=4k由余弦定理可知:cosC===﹣.故选A.点评;本题是基础题,考查正弦定理与余弦定理的应用,考查计算能力.4.四个人站成一排,解散后重新站成一排,恰有一个人位置不变的概率为()A. B. C. D.参考答案:C【考点】CB:古典概型及其概率计算公式.【分析】首先求得满足题意的排列的种数,然后利用古典概型公式进行计算即可求得概率值.【解答】解:使用乘法原理考查满足题意的排列方法,先从4个人里选3个进行调换,因为每个人都不能坐在原来的位置上,因此第一个人有两种坐法,被坐了自己椅子的那个人只能坐在第三个人的椅子上(一种坐法),才能保证第三个人也不坐在自己的椅子上.因此三个人调换有两种调换方法.故不同的调换方法有种,恰有一个人位置不变的概率为.故选:C.5.与双曲线有共同的渐近线,且过点的双曲线方程为(

)A.

B.

C.

D.参考答案:D6.用数学归纳法证明“”,从“”左端需增乘的代数式为(

)A.

B.

C.

D.参考答案:B略7.角A的一边上有四个点,另一边上有五个点,连同角的顶点共10个点,过这10个点可作三角形的个数是…(

)A.

B.

C.

D.参考答案:A8.已知等比数列满足,则(

)A.64 B.81 C.128 D.243参考答案:B略9.某人忘记了自己的文档密码,但记得该密码是由一个2,一个9,两个6组成的四位数,于是用这四个数随意排成一个四位数,输入电脑尝试,那么他找到自己的文档密码最多尝试次数为

A.36

B.24

C.18

D.12参考答案:D略10.一袋中有5个白球、3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则等于A. B.C. D.参考答案:D【分析】利用n次独立重复实验中恰好发生k次的概率计算公式,即可求得.【详解】由题意可得,取得红球的概率为,说明前11次取球中,有9次取得红球、2次取得白球,且第12次取得红球,故=故选:D.【点睛】本题考查了n次独立重复实验中恰好发生k次的概率,解本题须认真分析P(X=12)的意义,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.设,(为虚数单位),则的值为

.参考答案:2略12.已知x与y之间的一组数据:x0123y1357则y与x的线性回归方程=bx+a必过点

.参考答案:(1.5,4【考点】线性回归方程.【分析】要求y与x的线性回归方程为y=bx+a必过的点,需要先求出这组数据的样本中心点,根据所给的表格中的数据,求出横标和纵标的平均值,得到样本中心点,得到结果.【解答】解:∵,=4,∴本组数据的样本中心点是(1.5,4),∴y与x的线性回归方程为y=bx+a必过点(1.5,4)故答案为:(1.5,4)13.已知A,B两点都在直线上,且A,B两点横坐标之差为,则A,B之间的距离为

参考答案:14.已知椭圆的离心率,A,B是椭圆的左、右顶点,P是椭圆上不同于A,B的一点,直线PA,PB倾斜角分别为,则

参考答案:略15.在四边形ABCD中,,,,,则BD的最大值为______.参考答案:8试题分析:因为,所以由正弦定理可得,在以为直径的圆上,要使最大,就是到圆周上动点的最大值,为到圆圆心的距离加半径,即是,故答案为.考点:1、正弦定理、余弦定理应用;2、圆的性质.【方法点睛】本题主要考查正弦定理、余弦定理应用以及圆的性质,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.对正弦定理也是要注意两方面的应用:一是边角互化;二是求边求角.16.随机变量的取值为0,1,2,若,,则________.参考答案:设时的概率为,则,解得,故考点:方差.17.甲、乙、丙三人站成一排,则甲、乙相邻的概率是_________.参考答案:试题分析:甲、乙、丙三人站成一排,共有种排法,其中甲、乙相邻共有种排法,因此所求概率为考点:古典概型概率【方法点睛】古典概型中基本事件数的计算方法(1)列举法:此法适合于较简单的试验.(2)树状图法:树状图是进行列举的一种常用方法,适合较复杂问题中基本事件数的探求.(3)列表法:对于表达形式有明显二维特征的事件采用此法较为方便.(4)排列、组合数公式法.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.一条光线从点发出,经轴反射后,通过点,求入射光线和反射光线所在的直线方程.参考答案:解∵点A(3,2)关于x轴的对称点为A′(3,-2),∴由两点式得直线A′B的方程为=,即2x+y-4=0.同理,点B关于x轴的对称点B′(-1,-6),由两点式可得直线AB′的方程为=,即2x-y-4=0.∴入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0.略19.已知圆C经过点,且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P,Q两点.(1)求圆C的方程;(2)若(点O为原点),求实数k的值;(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.参考答案:【考点】直线与圆的位置关系.【分析】(1)设圆心C(a,a),半径为r.|AC|=|BC|=r,由此能求出圆C的方程.(2)由?=2×2×cos<,>=﹣2,得∠POQ=120°,圆心C到直线l:kx﹣y+1=0的距离d=1,由此能求出k=0.(3)当直线m的斜率不存在时,圆C也是满足题意的圆;当直线m的斜率存在时,设直线m:y=kx+4,由,得(1+k2)x2+8kx+12=0,由此利用根的判别式、韦达定理,结合已知条件能求出在以EF为直径的所有圆中,存在圆P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圆P经过点M(2,0).【解答】解:(1)设圆心C(a,a),半径为r.因为圆C经过点所以|AC|=|BC|=r,∴得,所以圆C的方程是x2+y2=4.﹣﹣﹣﹣﹣(2)因为?=2×2×cos<,>=﹣2,且与的夹角为∠POQ,所以cos∠POQ=﹣,∠POQ=120°,所以圆心C到直线l:kx﹣y+1=0的距离d=1,又d=,所以k=0.﹣﹣﹣﹣﹣﹣(联立直线与圆的方程结合设而不求求解酌情给分)(3)(ⅰ)当直线m的斜率不存在时,直线m经过圆C的圆心C,此时直线m与圆C的交点为E(0,2),F(0,﹣2),EF即为圆C的直径,而点M(2,0)在圆C上,即圆C也是满足题意的圆﹣﹣﹣﹣(ⅱ)当直线m的斜率存在时,设直线m:y=kx+4,由,消去y整理,得(1+k2)x2+8kx+12=0,由△=64k2﹣48(1+k2)>0,得或.设E(x1,y1),F(x2,y2),则有①﹣﹣﹣由①得,②,③若存在以EF为直径的圆P经过点M(2,0),则ME⊥MF,所以,因此(x1﹣2)(x2﹣2)+y1y2=0,即x1x2﹣2(x1+x2)+4+y1y2=0,﹣﹣﹣﹣﹣则,所以16k+32=0,k=﹣2,满足题意.﹣﹣﹣﹣此时以EF为直径的圆的方程为x2+y2﹣(x1+x2)x﹣(y1+y2)y+x1x2+y1y2=0,即,亦即5x2+5y2﹣16x﹣8y+12=0.﹣﹣﹣﹣综上,在以EF为直径的所有圆中,存在圆P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圆P经过点M(2,0).﹣﹣﹣﹣20.已知函数f(x)=(x﹣a)|x﹣2|,g(x)=2x+x﹣2,其中a∈R.(1)写出f(x)的单调区间(不需要证明);(2)如果对任意实数m∈[0,1],总存在实数n∈[0,2],使得不等式f(m)≤g(n)成立,求实数a的取值范围.参考答案:【考点】3R:函数恒成立问题;3E:函数单调性的判断与证明.【分析】(1)利用绝对值的定义,去掉绝对值,将函数f(x)转化成分段函数,再对分段函数的每一段研究它的单调性,即可确定f(x)的单调区间;(2)将问题转化为f(x)在[0,1]上的最大值小于等于g(x)在[0,2]上的最大值,即分别求f(x)在[0,1]上的最大值和g(x)在[0,2]上的最大值.对于g(x)易判断出它的单调性,即可求得g(x)在[0,2]上的最大值;对于f(x),结合(1)的结论,分类讨论即可求得f(x)在[0,1]上的最大值.列出不等式,即可求出实数a的取值范围.【解答】解:(1)∵f(x)=(x﹣a)|x﹣2|,∴,①当a=2时,f(x)的递增区间是(﹣∞,+∞),f(x)无减区间;②当a>2时,f(x)的递增区间是(﹣∞,2),,f(x)的递减区间是;③当a<2时,f(x)的递增区间是,(2,+∞),f(x)的递减区间是.(2)∵对任意实数m∈[0,1],总存在实数n∈[0,2],使得不等式f(m)≤g(n)成立,∴f(x)在[0,1]上的最大值小于等于g(x)在[0,2]上的最大值,当x∈[0,2]时,g(x)=2x+x﹣2单调递增,∴g(x)max=g(2)=4.当x∈[0,1]时,f(x)=﹣(x﹣a)(x﹣2)=﹣x2+(2+a)x﹣2a,①当,即a≤﹣2时,f(x)max=f(0)=﹣2a,∴g(x)max≤f(x)max,即﹣2a≤4,解得a≥﹣2,∴a=﹣2;

②当,即﹣2<a≤0时,f(x)max=,∴g(x)max≤f(x)max,即,解得﹣2≤a≤6,∴﹣2<a≤0;

③当,即a>0时,f(x)max=f(1)=1﹣a,∴g(x)max≤f(x)max,即1﹣a≤4,解得a≥﹣3,∴a>0.综合①②③,实数a的取值范围是[﹣2,+∞).21.(本小题12分)已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围.参考答案:解:将方程改写为,只有当即时,方程表示的曲线是焦点在y轴上的椭圆,所以命题p等价于;…………5分因为双曲线的离心率,所以,且1,解得,………………8分所以命题q等价于;

……………10分若p真q假,则;

若p假q真,则

综上:的取值范围为…………………12分22.根据下列条件求曲线的标准方程:(1)准线方程为的抛物线;(2)焦点在x轴上,且过点(2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论