版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州零冷两区七校联考2023年数学九年级第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.32.二次函数的图象如图,有下列结论:①,②,③时,,④,⑤当且时,,⑥当时,.其中正确的有()A.①②③ B.②④⑥ C.②⑤⑥ D.②③⑤3.已知矩形ABCD,下列结论错误的是()A.AB=DC B.AC=BD C.AC⊥BD D.∠A+∠C=180°4.如图,平行四边形ABCD中,E是BC延长线上一点,连结AE交CD于F,则图中相似的三角形共有()A.1对 B.2对C.3对 D.4对5.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为()A.20° B.25° C.30° D.35°6.如图,在中,,,,,则的长为()A.6 B.7 C.8 D.97.已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是()A.30πcm2 B.15πcm2 C.cm2 D.10πcm28.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4则四边形DBCE的面积是()A.6 B.9 C.21 D.259.下列图形中,是中心对称的图形的是()A.直角三角形 B.等边三角形 C.平行四边形 D.正五边形10.平行四边形四个内角的角平分线所围成的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形二、填空题(每小题3分,共24分)11.如图,⊙O经过A,B,C三点,PA,PB分别与⊙O相切于A,B点,∠P=46°,则∠C=_____.12.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).13.如图,,分别是边,上的点,,若,,,则______.14.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣x2+x+,则该运动员此次掷铅球的成绩是_____m.15.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.16.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是_____.17.如图,在边长为2的正方形ABCD中,以点D为圆心,AD长为半径画,再以BC为直径画半圆,若阴影部分①的面积为S1,阴影部分②的面积为S2,则图中S1﹣S2的值为_____.(结果保留π)18.如图,BA,BC是⊙O的两条弦,以点B为圆心任意长为半径画弧,分别交BA,BC于点M,N:分别以点M,N为圆心,以大于为半径画弧,两弧交于点P,连接BP并延长交于点D;连接OD,OC.若,则等于__________.三、解答题(共66分)19.(10分)小华为了测量楼房的高度,他从楼底的处沿着斜坡向上行走,到达坡顶处.已知斜坡的坡角为,小华的身高是,他站在坡顶看楼顶处的仰角为,求楼房的高度.(计算结果精确到)(参考数据:,,)20.(6分)如图,点D、E分别在的边AB、AC上,若,,.求证:∽;已知,AD::3,,求AC的长.21.(6分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.22.(8分)为做好全国文明城市的创建工作,我市交警连续天对某路口个“岁以下行人”和个“岁及以上行人”中出现交通违章的情况进行了调查统计,将所得数据绘制成如下统计图.请根据所给信息,解答下列问题.(1)求这天“岁及以上行人”中每天违章人数的众数.(2)某天中午下班时段经过这一路口的“岁以下行人”为人,请估计大约有多少人会出现交通违章行为.(3)请根据以上交通违章行为的调查统计,就文明城市创建减少交通违章提出合理建议.23.(8分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它等5个方面进行问卷调(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题.(1)本次调查共抽取了学生人;(2)求本次调查中喜欢踢足球人数;(3)若甲、乙两位同学通过抽签的方式确定自己填报的课间活动,则两位同学抽到同一运动的概率是多少?24.(8分)如图,△ABC中,AB=AC,BE⊥AC于E,D是BC中点,连接AD与BE交于点F,求证:△AFE∽△BCE.25.(10分)已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).26.(10分)某商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,则日销售量将减少20千克,那么每千克水果应涨价多少元时,商场获得的总利润(元)最大,最大是多少元?
参考答案一、选择题(每小题3分,共30分)1、D【分析】找到最简公分母,去分母后得到关于x的一元二次方程,求解后,再检验是否有增根问题可解.【详解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,检验:当x=1时,x2﹣4≠0,所以x=1是原方程的解;当x=-2时,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解为x=1.故选:D.【点睛】本题考查了可化为一元二次方程的分式方程的解法,解答完成后要对方程的根进行检验,判定是否有增根产生.2、D【分析】①只需根据抛物线的开口、对称轴的位置、与y轴的交点位置就可得到a、b、c的符号,从而得到abc的符号;②只需利用抛物线对称轴方程x==1就可得到2a与b的关系;③只需结合图象就可得到当x=1时y=a+b+c最小,从而解决问题;④根据抛物线x=图象在x轴上方,即可得到x=所对应的函数值的符号;⑤由可得,然后利用抛物线的对称性即可解决问题;⑥根据函数图像,即可解决问题.【详解】解:①由抛物线的开口向下可得a>0,
由对称轴在y轴的右边可得x=>0,从而有b<0,
由抛物线与y轴的交点在y轴的负半轴上可得c<0,
则abc>0,故①错误;
②由对称轴方程x==1得b=-2a,即2a+b=0,故②正确;
③由图可知,当x=1时,y=a+b+c最小,则对于任意实数m(),都满足,即,故③正确;
④由图像可知,x=所对应的函数值为正,
∴x=时,有a-b+c>0,故④错误;
⑤若,且x1≠x2,
则,
∴抛物线上的点(x1,y1)与(x2,y2)关于抛物线的对称轴对称,
∴1-x1=x2-1,即x1+x2=2,故⑤正确.⑥由图可知,当时,函数值有正数,也有负数,故⑥错误;∴正确的有②③⑤;故选:D.【点睛】本题主要考查了抛物线的性质(开口、对称轴、对称性、最值性等)、抛物线上点的坐标特征等知识,运用数形结合的思想即可解决问题.3、C【分析】由矩形的性质得出AB=DC,AC=BD,∠A=∠B=∠C=∠D=90°,则∠A+∠C=180°,只有AB=BC时,AC⊥BD,即可得出结果.【详解】∵四边形ABCD是矩形,∴AB=DC,AC=BD,∠A=∠B=∠C=∠D=90°,∴∠A+∠C=180°,只有AB=BC时,AC⊥BD,∴A、B、D不符合题意,只有C符合题意,故选:C.【点睛】此题主要考查了矩形的性质的运用,熟练掌握矩形的性质是解题的关键.4、C【分析】根据平行四边形的对边平行,利用“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”找出相似三角形,然后即可选择答案.【详解】在平行四边形ABCD中,AB∥CD,BC∥AD,所以,△ABE∽△FCE,△FCE∽△FDA,△ADF∽△EBA,共3对.故选C.【点睛】本题考查了相似三角形的判定,利用平行四边形的对边互相平行的性质,再结合“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”即可解题5、B【分析】根据切线的性质得到∠ODA=90°,根据直角三角形的性质求出∠DOA,根据圆周角定理计算即可.【详解】解:∵切于点∴∴∵∴∴故选:B【点睛】本题考查了切线的性质:圆心与切点的连线垂直切线、圆周角定理以及直角三角形两锐角互余的性质,结合图形认真推导即可得解.6、C【分析】根据平行线分线段成比例定理,由DE∥BC得,然后利用比例性质求EC和AE的值即可【详解】∵,∴,即,∴,∴.故选C.【点睛】此题考查平行线分线段成比例,解题关键在于求出AE7、B【解析】试题解析:∵底面半径为3cm,∴底面周长6πcm∴圆锥的侧面积是×6π×5=15π(cm2),故选B.8、C【解析】∵DE//BC,∴△ADE∽△ABC,∴,∵AD=2,BD=3,AB=AD+BD,∴,∵S△ADE=4,∴S△ABC=25,∴S四边形DBCE=S△ABC-S△ADE=25-4=21,故选C.9、C【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】解:A.直角三角形不是中心对称图象,故本选项错误;B.等边三角形不是中心对称图象,故本选项错误;C.平行四边形是中心对称图象,故本选项正确;D.正五边形不是中心对称图象,故本选项错误.故选:C.【点睛】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.10、B【解析】分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根据四个角都是直角的四边形是矩形解答.详解:∵四边形ABCD是平行四边形,
∴∠BAD+∠ABC=180°,
∵AE、BE分别是∠BAD、∠ABC的平分线,
∴∠BAE+∠ABE=∠BAD+∠ABC=90°,
∴∠FEH=90°,
同理可求∠F=90°,∠FGH=90°,∠H=90°,
∴四边形EFGH是矩形.故选B.点睛:本题考查了矩形的判定,平行四边形的邻角互补,角平分线的定义,注意整体思想的利用.二、填空题(每小题3分,共24分)11、67°【分析】根据切线的性质定理可得到∠OAP=∠OBP=90°,再根据四边形的内角和求出∠AOB,然后根据圆周角定理解答.【详解】解:∵PA,PB分别与⊙O相切于A,B两点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣46°=134°,∴∠C=∠AOB=67°,故答案为:67°.【点睛】本题考查了圆的切线的性质、四边形的内角和和圆周角定理,属于常见题型,熟练掌握上述知识是解题关键.12、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)【分析】根据相似三角形的判定解答即可.【详解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案为:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【点睛】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答.13、1【分析】证明△ADE∽△ACB,根据相似三角形的性质列出比例式,计算即可.【详解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.14、1【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【详解】解:在中,当y=0时,整理得:x2-8x-20=0,(x-1)(x+2)=0,解得x1=1,x2=-2(舍去),即该运动员此次掷铅球的成绩是1m.故答案为:1.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.15、1【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:=8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得=1cm.故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.16、30°【解析】根据点的坐标得到OD,OC的长度,利用勾股定理求出CD的长度,由此求出∠OCD的度数;由于∠OBD和∠OCD是弧OD所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD的度数.【详解】连接CD.由题意得∠COD=90°,∴CD是⊙A的直径.∵D(0,1),C(,0),∴OD=1,OC=,∴CD==2,∴∠OCD=30°,∴∠OBD=∠OCD=30°.(同弧或等弧所对的圆周角相等)
故答案为30°.【点睛】本题考查圆周角定理以及推论,可以结合圆周角进行解答.17、π【分析】如图,设图中③的面积为S1.构建方程组即可解决问题.【详解】解:如图,设图中③的面积为S1.由题意:,可得S1﹣S2=π,故答案为π.【点睛】本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.18、【分析】根据作图描述可知BD平分∠ABC,然后利用同弧所对的圆周角是圆心角的一半可求出∠CBD的度数,由∠ABD=∠CBD即可得出答案.【详解】根据作图描述可知BD平分∠ABC,∴∠ABD=∠CBD∵∠COD=70°∴∠BCD=∠COD=35°∴∠ABD=35°故答案为:35°.【点睛】本题考查了角平分线的作法,圆周角定理,判断出BD为角平分线,熟练掌握同弧所对的圆周角是圆心角的一半是解题的关键.三、解答题(共66分)19、.【分析】作DH⊥AB于H,根据余弦的定义求出BC,根据正弦的定义求出CD,结合题意计算即可.【详解】作DH⊥AB于H,
∵∠DBC=15°,BD=20,∴,,由题意得,四边形ECBF和四边形CDHB是矩形,∴EF=BC=19.2,BH=CD=5,∵∠AEF=45°,∴AF=EF=19.2,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26m,答:楼房AB的高度约为26m.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题和坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20、(1)证明见解析;(2)【分析】(1)根据三角形内角和证明即可证明三角形相似,(2)根据相似三角形对应边成比例即可解题.【详解】(1)证明:,(2)由得:【点睛】本题考查了相似三角形的判定和性质,中等难度,熟悉证明三角形相似的方法是解题关键.21、解:(1)见解析(2)【分析】(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果;(2)从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【详解】解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图如图所示,由图可知,共有12种等可能结果;(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为.【点睛】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.22、(1);(2)人;(3)应加大对老年人的交通安全教育(答案不唯一)【分析】(1)根据众数的概念求解可得;
(2)利用样本估计总体思想求解可得;
(3)根据折线图中的数据提出合理的建议均可,答案不唯一.【详解】(1)这天“岁及岁以上行人”中每天违章人数有三天是8人,出现次数最多,∴这天“岁及岁以上行人”中每天违章人数的众数为:;(2)估计出现交通违章行为的人数大约为:;(3)由折线统计图知,“岁及岁以上行人”违章次数明显多于“岁以下行人”,所以应加大对老年人的交通安全教育.(答案不唯一)【点睛】本题考查的是折线统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23、(1)50;(2)12;(3).【分析】(1)根据条形图和扇形图中打篮球的数据计算得出总人数;(2)用总人数减去其他组的人数即可得到踢足球的人数;(3)列表解答即可.【详解】(1)本次调查抽取的学生人数为:(人),故答案为:50;(2)本次调查中喜欢踢足球人数为:50-5-20-8-5=12(人);(3)列表如下:共有25种等可能的情况,其中两位同学抽到同一运动的有5种,∴P(两位同学抽到同一运动的)=.【点睛】此题考查数据的计算,正确掌握根据部分计算得出总体的方法,能计算某部分的人数,会列树状图或表格求概率.24、证明详见解析.【解析】试题分析:根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再证明∠FAD=∠CBE,于是根据有两组角对应相等的两个三角形相似即可得到结论.试题解析:证明:∵AB=AC,D是BC中点,∴AD⊥B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何防疫课件教学课件
- 2024第三季度上海歌剧院(第三批)人员招聘2人管理单位遴选500模拟题附带答案详解
- 中电科安智慧用电解决方案
- 企业风险管理保证书
- 互联网医疗合同与隐私保护
- 代持房产合同样本
- 企业借款合同范例钟表行业
- 临时工劳动合同环境科学
- 互联网人才培育协议
- 企业内训师培训班合作协议
- 2020年山东烟台中考满分作文《就这样被打动》9
- 2024-2030年中国盾构机行业发展趋势与投资策略建议报告
- 期中核心素质卷(试题)-2024-2025学年数学六年级上册北师大版
- 2024年重庆高考化学试题卷(含答案解析)
- 2025届四川省绵阳市高三第一次调研测试物理试卷含解析
- 04S519小型排水构筑物(含隔油池)图集
- 运用PDCA循环提高全麻患者体温检测率
- 《管理会计》说课及试讲
- 人情往来(礼金)账目表
- 实验室菌种运输、保存、使用与销毁管理制度
- 金融监管学-金融监管学课件
评论
0/150
提交评论