安徽省合肥市长丰县杨庙中学2022-2023学年高二数学理期末试题含解析_第1页
安徽省合肥市长丰县杨庙中学2022-2023学年高二数学理期末试题含解析_第2页
安徽省合肥市长丰县杨庙中学2022-2023学年高二数学理期末试题含解析_第3页
安徽省合肥市长丰县杨庙中学2022-2023学年高二数学理期末试题含解析_第4页
安徽省合肥市长丰县杨庙中学2022-2023学年高二数学理期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市长丰县杨庙中学2022-2023学年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.()50的二项展开式中,整数项共有(

)项A.3

B.4

C.5

D.6参考答案:B略2.由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是(

) A.归纳推理 B.演绎推理 C.类比推理 D.其它推理参考答案:C考点:类比推理.专题:常规题型.分析:从直线想到平面,从圆想到球,即从平面类比到空间.解答: 解:从直线类比到平面,从圆类比到球,即从平面类比到空间.用的是类比推理.故选C点评:本题主要考查学生的知识量和对知识的迁移类比的能力.3.已知圆(x+2)2+(y﹣2)2=a截直线x+y+2=0所得弦的长度为6,则实数a的值为()A.8 B.11 C.14 D.17参考答案:B【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】求出弦心距,再由条件根据弦长公式求得a的值.【解答】解:圆(x+2)2+(y﹣2)2=a,圆心(﹣2,2),半径.故弦心距d==.再由弦长公式可得a=2+9,∴a=11;故选:B.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.4.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为A.乙丑年

B.丙寅年

C.丁卯年

D.戊辰年参考答案:C5.直线x﹣y+1=0的倾斜角是()A. B. C. D.参考答案:B【考点】直线的倾斜角.【分析】把直线的方程化为斜截式,求出斜率,根据斜率和倾斜角的关系,倾斜角的范围,求出倾斜角的大小.【解答】解:直线y+1=0即y=x+1,故直线的斜率等于,设直线的倾斜角等于α,则0≤α<π,且tanα=,故α=60°,故选B.【点评】本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.求出直线的斜率是解题的关键.6.到两定点、的距离之差的绝对值等于6的点的轨迹(

)A.两条射线 B.线段 C.双曲线 D.椭圆参考答案:A7.复数的共轭复数是(

).A. B. C.-i D.i参考答案:C【分析】根据复数除法运算及共轭复数概念,可求得共轭复数的值。【详解】由复数除法运算,化简得所以z的共轭复数所以选C【点睛】本题考查了复数除法的运算和共轭附属的基本概念,属于基础题。8.与圆x2+y2=1及圆x2+y2﹣8x+12=0都外切的圆的圆心在()A.一个椭圆上 B.双曲线的一支上C.一条抛物线上 D.一个圆上参考答案:B【考点】圆与圆的位置关系及其判定.【分析】设动圆P的半径为r,然后根据动圆与圆x2+y2=1及圆x2+y2﹣8x+12=0都外切得|PF|=2+r、|PO|=1+r,再两式相减消去参数r,则满足双曲线的定义,问题解决.【解答】解:设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2﹣8x+12=0的圆心为F(4,0),半径为2.依题意得|PF|=2+r,|PO|=1+r,则|PF|﹣|PO|=(2+r)﹣(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支.故选B.9.已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为(

)

A.

B.

C.

D.参考答案:D10.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18

B.24 C.36

D.48参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.双曲线的焦点到它的渐近线的距离为_________________;参考答案:112.函数,,对,,使成立,则a的取值范围是

.参考答案:由函数的图象是开口向上的抛物线,且关于对称,所以时,函数的最小值为,最大值为,可得的值域为,又因为,所以为单调增函数,的值域为,即,以为对,,使成立,所以,解得,所以实数的取值范围是.

13.已知若有最小值,则实数a的取值范围是_____参考答案:【分析】讨论>1,0<<1,结合指数函数的单调性,绝对值函数的单调性和最值的求法,可得的范围.【详解】当>1时,x≤1时,f(x)=+在上递增,则f(x)∈(,2],x>1时,f(x)=|x﹣|+1≥1,当x=时取得最小值1,则f(x)的值域为[1,+∞),可得>1时f(x)取得最小值1;当0<<1时,x≤1时,f(x)=+在上递减,则f(x)∈[2,+∞);x>1时,f(x)=|x﹣|+1=x﹣+1递增,可得f(x)>2﹣,若f(x)存在最小值,可得2﹣≥2,即≤,可得0<≤.综上可得>1或0<≤.故答案为:.【点睛】本题考查分段函数的运用,考查分类讨论思想方法,以及指数函数的单调性和含绝对值的函数的单调性,考查运算能力,属于中档题.14.已知函数,对于满足1<x1<x2<2的任意x1,x2,给出下列结论:①f(x2)﹣f(x1)>x2﹣x1;

②x2f(x1)>x1f(x2);③(x2﹣x1)[f(x2)﹣f(x1)]<0;

④(x2﹣x1)[f(x2)﹣f(x1)]>0其中正确结论有(写上所有正确结论的序号).参考答案:②③【考点】函数单调性的性质.【专题】函数思想;综合法;函数的性质及应用;导数的综合应用.【分析】可设,对于①②可构造函数,然后求导数,根据导数符号判断函数的单调性,根据单调性便可判断x1,x2对应函数值的大小,从而判断结论①②的正误;而对于③④,可求导数f′(x),根据导数符号便可判断出f(x)在(1,2)上单调递减,从而判断出③④的正误.【解答】解:设,①设y=f(x)﹣x,即y=,;∵1<x<2;∴y′<0;∴f(x)﹣x在(1,2)上单调递减;∵1<x1<x2<2;∴f(x1)﹣x1>f(x2)﹣x2;∴f(x2)﹣f(x1)<x2﹣x1;∴该结论错误;②设y=,即;∵1<x<2;∴y′>0;∴在(1,2)上单调递增;∵1<x1<x2<2;∴;∴x2f(x1)>x1f(x2);∴该结论正确;③;1<x<2,∴f′(x)<0;∴f(x)在(1,2)上单调递减;∵1<x1<x2<2;∴f(x1)>f(x2);∴(x2﹣x1)[f(x2)﹣f(x1)]<0;∴该结论正确,结论④错误;∴正确的结论为②③.故答案为:②③.【点评】考查构造函数,根据函数单调性解决问题的方法,根据导数符号判断函数单调性的方法,以及函数的单调性定义.15.近几年来,人工智能技术得到了迅猛发展,某公司制造了一个机器人,程序设计师设计的程序是让机器人每一秒钟前进一步或后退一步,并且以先前进3步,然后再后退2步的规律前进.如果将机器人放在数轴的原点,面向正的方向在数轴上前进(1步的距离为1个单位长度).令P(n)表示第n秒时机器人所在位置的坐标,且记P(0)=0,则下列结论中正确的是_____.(请将正确的序号填在横线上)①P(3)=3;②P(5)=1;③P(2018)<P(2019);④P(2017)<P(2018);⑤P(2003)=P(2018).参考答案:①②③④【分析】按“前进3步后退2步”的步骤去算,发现机器人每5秒完成一个循环,解出对应的数值,再根据规律推导,即可得解.【详解】根据题中的规律可得:P(0)=0,P(1)=1,P(2)=2,P(3)=3,P(4)=2,P(5)=1,P(6)=2,P(7)=3,P(8)=4,P(9)=3,P(10)=2,P(11)=3,P(12)=4,P(13)=5,P(14)=4,P(15)=3,…以此类推得:P(5k)=k,P(5k+1)=k+1,P(5k+2)=k+2,P(5k+3)=k+3,P(5k+4)=k+2,(k为正整数),故P(3)=3,P(5)=1,故①和②都正确,∴P(2017)=405,P(2018)=406,P(2019)=407,P(2003)=403,∴P(2018)<P(2019),故③正确;P(2017)<P(2018),故④正确P(2003)<P(2018),故⑤错误.故答案为:①②③④.【点睛】本题考查简单的合情推理等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.16.已知抛物线,则其焦点坐标为

,直线与抛物线交于两点,则

.参考答案:(0,1),抛物线,其焦点坐标为.由17.已知,则的最小值是

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.解下列不等式:(1)8x﹣1≤16x2;(2)x2﹣2ax﹣3a2<0(a<0).参考答案:【考点】其他不等式的解法.【专题】计算题;转化思想;综合法;不等式的解法及应用.【分析】分别将两个不等式分解变形,求不等式的解集.【解答】解:(1)8x﹣1≤16x2,变形为:(4x﹣1)2≥0,所以x∈R;(2)x2﹣2ax﹣3a2<0(a<0),变形为(x﹣3a)(x+a)<0,所以不等式的解集为{x|3a<x<﹣a}.【点评】本题考查了一元二次不等式的解法;利用分解因式法将不等式变形求解.19.(12分)正三角形有这样一个性质:正三角形内任一点(不与顶点重合)到三边的距离和为定值.且此定值即高.

类比到空间正四面体,对于空间正四面体内任一点(不与顶点重合),关注它到四个面的距离和,

请类比出一个正确的结论.并予以证明.参考答案:类比的结论是:空间正四面体内任一点(不与顶点重合)到它的四个面的距离和为定值.且此定值即正四面体的高.

………..3下面给出证明:如图:正四面体ABCD,P为其内部一点,则点P将四面体分成四个共顶点的三棱锥.

设点P到四个面的距离分别记为,

正四面体的高记为由

……6得:

………9为正四面体,四个面面积相同. …………..1220.(12分)已知椭圆的离心率为,短轴的一个端点到右焦点的距离为。 (1)求椭圆C的方程; (2)设直线L与椭圆C交于A、B两点,坐标原点O到L的距离的,求△AOB面积的最大值。参考答案:(1) (2) ∴ 由于 当且仅当时取等号,此时符合 当斜率不存在时,,此时 21.已知函数f(x)=-x3+3x2+9x+a.(I)求f(x)的单调减区间;(II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.参考答案:(I)f'(x)=-3x2+6x+9.令f'(x)<0,解得x<-1或x>3,所以函数f(x)的单调递减区间为(-,-1),(3,+).(II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,所以f(2)>f(-2),因为在(-1,3)上f'(x)>0,所以f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论