版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年浙江省嘉兴市大桥镇中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是()A. B. C. D.参考答案:B【考点】直线与圆锥曲线的关系;直线的斜率.【分析】由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C:可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选B.2.某学校高中每个年级只有三个班,且同一年级的三个班的羽毛球水平相当,各年级举办班级羽毛球比赛时,都是三班得冠军的概率为(
)
A.
B.
C.
D.参考答案:A略3.空间两条直线a、b与直线l都成异面直线,则a、b的位置关系是(
).A.平行或相交 B.异面或平行C.异面或相交 D.平行或异面或相交参考答案:D直线、与直线都成异面直线,与之间并没有任何限制,所以与直线的位置关系所有情况都可能.故选.4.抛物线的焦点坐标为(
)A. B. C.
D.参考答案:A略5.若右面的程序框图输出的是,则①应为 A. B.C. D.参考答案:B6.有下述说法:①是的充要条件.
②是的充要条件.③是的充要条件.则其中正确的说法有(
)A.个
B.个
C.个
D.个参考答案:A7.的展开式中的系数为(
)A.6 B.18 C.24 D.30参考答案:B【分析】分析中的系数,再结合分析即可.【详解】中含的项为,含的项为.故展开式中含的项为.故选:B【点睛】本题主要考查了二项式定理求解特定项的系数,需要分情况讨论求和.属于基础题.8.在等差数列{a}中,已知a=2,a+a=13,则a+a+a等于(
)A.40
B.42
C.43
D.45参考答案:B9.已知抛物线C:y2=2px(p>0)的焦点为F,以F为圆心且半径为4的圆交C于M,N两点,交C的准线l于A、B两点,若A、F、N三点共线,则p=()A.4 B.3 C.2 D.1参考答案:C【考点】抛物线的简单性质.【分析】由题意,M的横坐标为,纵坐标取p,则p2+3p2=16,即可求出p的值.【解答】解:由题意,M的横坐标为,纵坐标取p,则p2+3p2=16,∴p=2,故选C.【点评】本题考查抛物线的方程与性质,考查圆与抛物线的位置关系,比较基础.10.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为
A.2
B.3
C.4
D.5参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知,若不等式的解集为A,已知,则a的取值范围为_____.参考答案:[2,+∞)【分析】根据题意,分析可得即,其解集中有子集,设,按二次函数系数的性质分3种情况分类讨论,分别求出的取值范围,综合可得结果.【详解】根据题意得,,则不等式即,变形可得,若其解集为A,且,设,则不等式即,(i)当,即时,不等式的解集为,符合题意;(ii)当,即时,若必有,解得,则此时有:;(iii)当,即时,为二次函数,开口向上且其对称轴为,又,所以在成立,此时综上,的取值范围为【点睛】本题考查二次不等式恒成立和二次函数的性质,二次不等式恒成立问题要根据二次项系数分类求解.12.
.参考答案:略13.设集合,,若,则实数a的取值范围为___________.参考答案:略14.抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为.参考答案:(1,2)【考点】抛物线的简单性质.【分析】由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=﹣1.如图所示,过点A作AM⊥l,垂足为M.由定义可得|AM|=|AF|.因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值.yA,代入抛物线方程可得xA.【解答】解:由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=﹣1.如图所示,过点A作AM⊥l,垂足为M.则|AM|=|AF|.因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值3﹣(﹣1)=4.此时yA=2,代入抛物线方程可得22=4xA,解得xA=1.∴点A(1,2).故答案为:(1,2).15.设的内角所对的边为,则下列命题正确的是
(写出所有正确命题的序号).①若,则.
②若,则.
③若,则.
④若,则.⑤若,则.参考答案:①②③16.等轴双曲线的一个焦点是,则它的标准方程是
。参考答案:略17.已知函数,则的值等于
.参考答案:3
略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知等腰梯形OABC的顶点A、B在复平面上对应的复数分别为,且O是坐标原点,OA//BC,求顶点C所对应的复数。参考答案:设.…2分由,,得,,…4分即…10分,,舍去..…12分19.有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,求这个新数列的各项之和.参考答案:【考点】84:等差数列的通项公式.【分析】根据题意求出两个数列,相同的项组成的数列,求出项数,然后求出它们的和即可.【解答】解:有两个等差数列2,6,10,…,190及2,8,14,…200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,2,14,26,38,50,…,182是两个数列的相同项.共有=16个,也是等差数列,它们的和为=1472这个新数列的各项之和为1472.20.已知双曲线的离心率,过点和的直线与原点的距离为.(1)求双曲线的方程;(2)直线与该双曲线交于不同的两点,且两点都在以为圆心的同一圆上,求的取值范围.参考答案:(1);(2)或略21.(本小题满分13分)已知为实数,证明:.参考答案:证明:∵为实数,∴.∴左边-右边=.∴得证.法二:根据柯西不等式,有.∴得证.22.(本小题满分12分)如图所示,F1、F2分别为椭圆C:的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点到F1、F2两点的距离之和为4.(1)求椭圆C的方程和焦点坐标;(2)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求△F1PQ的面积.参考答案:(Ⅰ)由题设知:2a=4,即a=2
将点代入椭圆方程得,解得b2=3
∴c2=a2-b2=4-3=1,故椭圆方程为--------------(4分)
(Ⅱ)由(Ⅰ)知,∴,
∴PQ所在直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业团队建设团体辅导活动方案
- 金属加工行业钢材供应链优化方案
- 小学校园安全责任制度
- 体育赛事安保工作方案
- 环保机构废旧物资处理方案
- 外卖平台食材配送方案
- 金融行业系统运维服务方案
- 医院设备巡检机器人维护方案
- 圆锯市场发展预测和趋势分析
- 2024年现货农产品买卖协议模板
- 小升初个人简历模板下载
- 山东省济南市历下区2023-2024学年八年级上学期期中物理试卷
- 人教版数学七年级上册动点专题讲义
- 安全生产隐患识别图集 问题图片和整改图片对比 危险源识别(中)
- OSA患者围术期管理的专家共识
- 中等职业学校教育特色化专业建设方案(机电技术应用专业)
- 陕西省西安市碑林区2023-2024学年三年级上学期期中数学试卷
- 河北省沧衡八校联盟2023-2024学年高二上学期11月期中数学试题
- 我的家乡湖北咸宁介绍
- 《财务管理》课程教学成果创新报告
- 工程项目培训制度
评论
0/150
提交评论