版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省安庆市白泽湖中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若x,y满足且z=2x+y的最大值为6,则k的值为()A.﹣1 B.1 C.﹣7 D.7参考答案:B【考点】简单线性规划.【分析】先画出满足条件的平面区域,由z=2x+y得:y=﹣2x+z,显然直线y=﹣2x+z过A时z最大,得到关于k的不等式,解出即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得:A(k,k+3),由z=2x+y得:y=﹣2x+z,显然直线y=﹣2x+z过A(k,k+3)时,z最大,故2k+k+3=6,解得:k=1,故选:B.2.“指数函数是减函数,是指数函数,所以是减函数”上述推理(
)A.大前提错误 B.小前提错误 C.推理形式错误 D.以上都不是参考答案:A【分析】根据底数情况即可判断大前提为错误.【详解】指数函数的单调性由底数决定:当时,指数函数为增函数,当时指数函数为减函数,所以大前提错误.所以选A【点睛】本题考查了演绎推理的定义及形式,属于基础题.3.张、王夫妇各带一个小孩儿到上海迪士尼乐园游玩,购票后依次入园,为安全起见,首尾一定要排两位爸爸,另外两个小孩要排在一起,则这6个人的入园顺序的排法种数是(
)A.12 B.24 C.36 D.48参考答案:B分析:先安排首尾的两位家长,再将两个小孩捆绑作为一个整体,与剩下的两位家长作为三个元素安排在中间即可得到结论.详解:先安排首尾两个位置的男家长,共有种方法;将两个小孩作为一个整体,与剩下的另两位家长安排在两位男家长的中间,共有种方法.由分步乘法计数原理可得所有的排法为种.故选B.点睛:求解排列、组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.”4.已知展开式各项的二项式系数之和为512,则展开式中的系数为(
)A.
B.7
C.
D.21参考答案:C5.设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数为()A.9
B.8
C.7
D.6参考答案:B6.设则()A、
B、C、D、参考答案:A7.已知函数f(x)的定义域为R,且x3f(x)+x3f(﹣x)=0,若对任意x∈[0,+∞)都有3xf(x)+x2f'(x)<2,则不等式x3f(x)﹣8f(2)<x2﹣4的解集为()A.(﹣2,2) B.(﹣∞,﹣2)∪(2,+∞) C.(﹣4,4) D.(﹣∞,﹣4)∪(4,+∞)参考答案:B【考点】利用导数研究函数的单调性.【分析】构造函数h(x)=x3f(x)﹣2x,根据函数的单调性和奇偶性求出不等式的解集即可.【解答】解:令h(x)=x3f(x)﹣2x,则h′(x)=x[3xf(x)+x2f'(x)﹣2],若对任意x∈[0,+∞)都有3xf(x)+x2f'(x)<2,则h′(x)≤0在[0,+∞)恒成立,故h(x)在[0,+∞)递减,若x3f(x)+x3f(﹣x)=0,则h(x)=h(﹣x),则h(x)在R是偶函数,h(x)在(﹣∞,0)递增,不等式x3f(x)﹣8f(2)<x2﹣4,即不等式x3f(x)﹣x2<8f(2)﹣4,即h(x)<h(2),故|x|>2,解得:x>2或x<﹣2,故不等式的解集是(﹣∞,﹣2)∪(2,+∞),故选:B.【点评】本题考查了函数的单调性、奇偶性问题,考查转化思想,构造函数g(x)是解题的关键,本题是一道中档题.8.已知函数,则(
)A.4
B.
C.-4
D.参考答案:B略9.由小到大排列的一组数据:,其中每个数据都小于,则样本,的中位数可以表示为(
)A、
B、
C、
D、
w参考答案:C10.平面与平面平行的条件可以是
(▲)A.内有无穷多条直线与平行;
B.直线a//,a//C.直线a,直线b,且a//,b//
D.内的任何直线都与平行参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.如图,球O的半径为2,圆O1是一小圆,O1O=,A,B是圆O1上两点.若∠AO1B=,则A、B两点间的球面距离为________.参考答案:略12.已知直平行六面体的底面边长分别为且它们的夹角为侧棱长为则它的全面积是
参考答案:18813.=
.
参考答案:5;略14.等差数列{an},{bn}的前n项和为Sn,Tn.且=,则=.参考答案:【考点】等差数列的性质;等差数列的前n项和.【专题】计算题;转化思想;转化法;等差数列与等比数列.【分析】利用=,即可得出.【解答】解:∵====.故答案为:.【点评】本题考查了等差数列的通项公式性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.15.若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是_______________.参考答案:16.
.参考答案:17.已知函数是奇函数且是上的增函数,若满足不等式,则的最大值是______.
参考答案:8三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)设关于x的一元二次方程x2+2ax+b2=0.(Ⅰ)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.参考答案:解
设事件A为“方程x2+2ax+b2=0有实根”.当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,事件A发生的概率为P(A)==.(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}.构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.所以所求的概率为P(A)==.19.设函数g(x)=x2﹣2x+1+mlnx,(m∈R).(1)当m=1时,求函数y=g(x)在点(1,0)处的切线方程;(2)当m=﹣12时,求f(x)的极小值;(3)若函数y=g(x)在x∈(,+∞)上的两个不同的数a,b(a<b)处取得极值,记{x}表示大于x的最小整数,求{g(a)}﹣{g(b)}的值(ln2≈0.6931,ln3≈1.0986).参考答案:【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)把m=1代入函数解析式,求得导函数,得到切线的斜率,则切线方程可求;(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值即可;(3)根据函数的单调性得到函数y=g(x)在x∈(,+∞)上有两个极值点的m的范围,由a,b为方程2x2﹣2x+m=0的两相异正根,及根与系数关系,得到a,b的范围,把m用a(或b)表示,得到g(a)(或g(b)),求导得到g(b)的取值范围,进一步求得{g(a)}(或{g(b)}),则答案可求.【解答】解:(1)函数y=g(x)=x2﹣2x+1+mlnx,g′(x)=2x﹣2+,k=g′(1)=1,则切线方程为y=x﹣1,故所求切线方程为x﹣y﹣1=0;(2)m=﹣12时,g(x)=)=x2﹣2x+1﹣12lnx,(x>0),g′(x)=2x﹣2﹣=,令g′(x)>0,解得:x>3,令g′(x)<0,解得:0<x<3,故g(x)在(0,3)递减,在(3,+∞)递增,故g(x)极小值=g(3)=4﹣12ln3;(3)函数y=g(x)的定义域为(0,+∞),g′(x)=2x﹣2+=,令g′(x)=0并结合定义域得2x2﹣2x+m>0.①当△≤0,即m≥时,g′(x)≥0,则函数g(x)的增区间为(0,+∞);②当△>0且m>0,即0<m<时,函数g(x)的增区间为(0,),(,+∞);③当△>0且m≤0,即m≤0时,函数g(x)的增区间为(,+∞);故得0<m<时,a,b为方程2x2﹣2x+m=0的两相异正根,<b<,<a<,又由2b2﹣2b+m=0,得m=﹣2b2+2b,∴g(b)=b2﹣2b+1+mlnb=b2﹣2b+1+(﹣2b2+2b)lnb,b∈(,),g′(b)=2b﹣2+(﹣4b+2)lnb+2﹣2b=﹣4(b﹣)lnb,当b∈(,)时,g′(b)>0,即函数g(b)是(,)上的增函数.故g(b)的取值范围是(,),则{g(b)}=0.同理可求得g(a)的取值范围是(,),则{g(a)}=0或{g(a)}=1.∴{g(a)}﹣{g(b)}=0或1.20.如图,在直四棱柱中,底面四边形是直角梯形其中,,且.(1)求证:直线平面;(2)试求三棱锥-的体积.参考答案:解:(1)在梯形内过点作交于点,则由底面四边形是直角梯形,,,以及可得:,且,.又由题意知面,从而,而,故.因,及已知可得是正方形,从而.因,,且,所以面.(2)因三棱锥与三棱锥是相同的,故只需求三棱锥的体积即可,而,且由面可得,又因为,所以有平面,即为三棱锥的高.故略21.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PA=PB,且侧面PAB⊥平面ABCD,点E是AB的中点.(Ⅰ)求证:CD∥平面PAB;(Ⅱ)求证:PE⊥AD.参考答案:【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】(Ⅰ)由已知CD∥AB,由此能证明CD∥平面PAB.(Ⅱ)推导出PE⊥AB,从而PE⊥平面ABCD,由此能证明PE⊥AD.【解答】证明:(Ⅰ)∵底面ABCD是菱形,∴CD∥AB.又∵CD?平面PAB,且AB?平面PAB,∴CD∥平面PAB.(Ⅱ)∵PA=PB,点E是AB的中点,∴PE⊥AB.∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE?平面PAB,∴PE⊥平面ABCD.∵AD?平面ABCD,∴PE⊥AD.【点评】本题考查线面平行的证明,考查线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.22.从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版智能医疗信息系统研发与实施合同
- 雇佣教练合同范本
- 药品生产合同范本
- 2024年度农业无人机服务外包合同
- 二零二四年度保险合同保险范围及保险费用
- 竞争优势塑造路径
- 二零二四年公共交通门锁采购合同
- 04年春国家开放大学教学设备采购及安装合同
- 酒店个性化服务案例研究
- 2024版健身器材采购与销售合同
- 手部先天性疾患多指畸形课件
- 如何面对挫折-心理健康教育课件
- 常见临床研究分级
- 机械设备定期检查维修保养使用台账
- 丽声北极星分级绘本第四级上 Stop!Everyone Stop!教学设计
- 希尔顿酒店市场营销环境的swot分析 2
- 消化道穿孔课件
- 可编辑修改中国地图模板
- 最新电大市场调查与商情预测作业1-4参考答案小抄汇总
- CJJ-T 34-2022 城镇供热管网设计标准
- 人教版小学数学一年级上册20以内加减法口算题汇编
评论
0/150
提交评论