版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省姜堰区2023年数学九年级第一学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如图所示.若y(℃)表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差).则y与t之间的函数关系用图象表示,大致正确的是()A. B. C. D.2.下列立体图形中,主视图是三角形的是(
).A. B. C. D.3.对于二次函数的图象,下列结论错误的是()A.顶点为原点 B.开口向上 C.除顶点外图象都在轴上方 D.当时,有最大值4.如图,四边形ABCD是正方形,延长BC到E,使,连接AE交CD于点F,则()A.67.5° B.65° C.55° D.45°5.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40° B.50° C.55° D.60°6.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,下列等式中成立的是()A. B. C. D.7.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程=15,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成8.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.如图,已知与相切于点,点在上.求证:.证明:连接并延长,交于点,连接.∵与相切于点,∴,∴.∵@是的直径,∴(直径所对的圆周角是90°),∴,∴◎.∵,∴▲(同弧所对的※相等),∴.下列选项中,回答正确的是()A.@代表 B.◎代表 C.▲代表 D.※代表圆心角9.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AEDC.= D.=10.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.311.下表是一组二次函数的自变量x与函数值y的对应值:
1
1.1
1.2
1.3
1.4
-1
-0.49
0.04
0.59
1.16
那么方程的一个近似根是()A.1 B.1.1 C.1.2 D.1.312.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)二、填空题(每题4分,共24分)13.根据下列统计图,回答问题:该超市10月份的水果类销售额___________11月份的水果类销售额(请从“>”“=”或“<”中选一个填空).14.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于____________.15.若m是方程2x2﹣3x=1的一个根,则6m2﹣9m的值为_____.16.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.17.当a=____时,关于x的方程式为一元二次方程18.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为_______cm.三、解答题(共78分)19.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为.(2)小明和小颖用转盘做游戏,每人转动转盘一次,若两次指针所指数字之和为奇数,则小明胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或者列表法说明理由.20.(8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用15m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m1.21.(8分)证明相似三角形对应角平分线的比等于相似比.已知:如图,△ABC∽△A′B′C′,相似比为k,.求证.(先填空,再证明)证明:22.(10分)如图,在△ABC中,点D、E分别在边AB、AC上,DE、BC的延长线相交于点F,且EF·DF=BF·CF.(1)求证:AD·AB=AE·AC;(2)当AB=12,AC=9,AE=8时,求BD的长与的值.23.(10分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.24.(10分)已知:关于x的方程,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.25.(12分)已知:在△ABC中,AB=AC,AD⊥BC于点D,分别过点A和点C作BC、AD边的平行线交于点E.(1)求证:四边形ADCE是矩形;(2)连结BE,若,AD=,求BE的长.26.某商场购进一种单价为10元的商品,根据市场调查发现:如果以单价20元售出,那么每天可卖出30个,每降价1元,每天可多卖出5个,若每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式;(2)求W与x的函数关系式(不必写出x的取值范围)(3)若降价x元(x不低于4元)时,销售这种商品每天获得的利润最大为多少元?
参考答案一、选择题(每题4分,共48分)1、A【分析】选取4时和8时的温度,求解温度差,用排除法可得出选项.【详解】由图形可知,骆驼0时温度为:37摄氏度,4时温度为:35℃,8时温度为:37℃∴当t=4时,y=37-35=2当t=8时,y=37-35=2即在t、y的函数图像中,t=4对应的y为2,t=8对应的y为2满足条件的只有A选项故选:A【点睛】本题考查函数的图像,解题关键是根据函数的意义,确定函数图像关键点处的数值.2、B【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【详解】A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选B.【点睛】本题考查了简单几何体的三视图,圆锥的主视图是三角形.3、D【分析】根据二次函数的性质逐项判断即可.【详解】根据二次函数的性质,可得:二次函数顶点坐标为(0,0),开口向上,故除顶点外图象都在x轴上方,故A、B、C正确;当x=0时,y有最小值为0,故D错误.故选:D.【点睛】本题考查二次函数的性质,熟练掌握二次函数顶点坐标,开口方向,最值与系数之间的关系是解题的关键.4、A【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,把各角之间关系找到即可求解.【详解】解:∵四边形ABCD是正方形,CE=CA,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFD=90°-22.5°=67.5°,故选A.【点睛】主要考查到正方形的性质,等腰三角形的性质和外角与内角之间的关系.这些性质要牢记才会灵活运用.5、A【分析】首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.【详解】解:连接OC,∵CE是⊙O的切线,∴OC⊥CE,即∠OCE=90°,∵∠COB=2∠CDB=50°,∴∠E=90°﹣∠COB=40°.故选:A.【点睛】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.6、B【分析】由题意根据三角函数的定义进行判断,从而判断选项解决问题.【详解】解:∵Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,∴,故A选项不成立;,故B选项成立;,故C选项不成立;,故D选项不成立;故选B.【点睛】本题主要考查锐角三角函数的定义,我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.7、C【解析】题中方程表示原计划每天铺设管道米,即实际每天比原计划多铺设米,结果提前天完成,选.8、B【分析】根据圆周角定理和切线的性质以及余角的性质判定即可.【详解】解:由证明过程可知:A:@代表AE,故选项错误;B:由同角的余角相等可知:◎代表,故选项正确;C和D:由同弧所对的圆周角相等可得▲代表∠E,※代表圆周角,故选项错误;故选B.【点睛】本题考查了切线的性质,圆周角定理,余角的性质等知识点,熟记知识点是解题的关键.9、C【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【详解】BADCAE,A,B,D都可判定,选项C中不是夹这两个角的边,所以不相似.故选C.【点睛】考查相似三角形的判断方法,掌握相似三角形常用的判定方法是解题的关键.10、B【解析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.11、C【详解】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根.12、C【分析】把抛物线解析式化为顶点式可求得答案.【详解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选:C.【点睛】本题考查了抛物线的顶点坐标的求解,解题的关键是熟悉配方法.二、填空题(每题4分,共24分)13、>【分析】根据统计图,分别求出该超市10月份的水果类销售额与11月份的水果类销售额,比较大小即可.【详解】∵10月份的水果类销售额为(万元),11月份的水果类销售额为(万元),∴10月份的水果类销售额>11月份的水果类销售额.故答案是:>【点睛】本题主要考查从统计图种提取信息,通过观察统计图,得到有用的信息,是解题的关键.14、2【分析】由题意可得EC=2,CF=4,根据勾股定理可求EF的长.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=1.∵△ABE绕点A逆时针旋转后得到△ADF,∴DF=BE=1,∴CF=CD+DF=1+1=4,CE=BC﹣BE=1﹣1=2.在Rt△EFC中,EF.【点睛】本题考查旋转的性质,正方形的性质,勾股定理,熟练运用这些性质解决问题是本题的关键.15、1【分析】把m代入方程2x2﹣1x=1,得到2m2-1m=1,再把6m2-9m变形为1(2m2-1m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣1x=1的一个根,∴2m2﹣1m=1,∴6m2﹣9m=1(2m2﹣1m)=1×1=1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16、50°【解析】由平行线的性质可求得∠C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知∠AC/C的度数,依据三角形的内角和定理可求得∠CAC/的度数,从而得到∠BAB/的度数.解:∵CC/∥AB,∴∠C/CA=∠CAB=65°,∵由旋转的性质可知:AC=AC/,∴∠ACC/=∠AC/C=65°.∴∠CAC/=180°-65°-65°=50°.∴∠BAB/=50°.17、≠±1【分析】方程是一元二次方程的条件是二次项次数不等于0,据此即可求得a的范围.【详解】根据题意得:a1-4≠0,解得:a≠±1.故答案是:≠±1.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.18、【分析】根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.【详解】解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根据旋转的性质知,A′C=AC,∴A′C=AB=5cm.∴点A′是斜边AB的中点,∴AA′=AB=5cm.∴AA′=A′C=AC,∴∠A′CA=60°.∴CA′旋转所构成的扇形的弧长为:(cm).故答案为:.三、解答题(共78分)19、(1);(2)不公平,理由见解析【分析】(1)由标有数字1、2、1的1个转盘中,奇数的有1、1这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况,得出这两个数字之和是奇数与偶数的情况,再根据概率公式即可得出答案.【详解】解:(1)∵在标有数字1、2、1的1个转盘中,奇数的有1、1这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)不公平,理由如下:列表如下:121121421451456由表可知,所有等可能的情况数为9种,其中两次指针所指数字之和为奇数的有4种结果,和为偶数的有5种结果,所以小明获胜的概率为,小颖获胜的概率为,由≠知此游戏不公平.【点睛】此题考查的是求概率问题,掌握列表法和概率公式是解决此题的关键.20、可以围成AB的长为15米,BC为10米的矩形【解析】解:设AB=xm,则BC=(50﹣1x)m.根据题意可得,x(50﹣1x)=300,解得:x1=10,x1=15,当x=10,BC=50﹣10﹣10=30>15,故x1=10(不合题意舍去).答:可以围成AB的长为15米,BC为10米的矩形.根据可以砌50m长的墙的材料,即总长度是50m,AB=xm,则BC=(50﹣1x)m,再根据矩形的面积公式列方程,解一元二次方程即可.21、已知,分别是∠BAC、∠上的角平分线,【分析】根据相似三角形的性质,对应边成比例,对应角相等,可证得和相似,再利用相似三角形的性质求解.【详解】已知,分别是∠BAC、∠上的角的平分线,求证:∵△ABC∽△A′B′C′,
∴,∠B=∠,∠BAC∠,∵分别是∠BAC、∠上的角的平分线,∴∠BAD∠,∴,∴,【点睛】本题实际上是相似三角形的性质的拓展,不但有对应角的平分线等于相似比,对应边上的高,对应中线也都等于相似比.22、(1)答案见解析;(2)BD=6,【分析】(1)根据相似三角形的判定得出△EFC∽△BFD,得出∠CEF=∠B,进而证明△CAB∽△DAE,再利用相似三角形的性质证明即可;(2)根据相似三角形的性质得出有关图形的面积之比,进而解答即可.【详解】证明:(1)∵EF•DF=BF•CF,
∵∠EFC=∠BFD,∴△EFC∽△BFD∴∠CEF=∠B,∴∠B=∠AED∵∠CAB=∠DAE,∴△CAB∽△DAE∴∴AD·AB=AE·AC.(2)由(1)知AD·AB=AE·AC∴AD=6,BD=6,EC=1∵,∴∵∴∴.点睛:本题考查相似三角形的判定和性质知识,解题的关键是灵活运用相似三角形的判定解答.23、路灯杆AB的高度是1m.【解析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,又∵CD=EF,∴,∵DF=3m,FG=4m,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,∴BD=9,BF=9+3=12,∴,解得AB=1.答:路灯杆AB的高度是1m.【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.24、(1)证明见解析;(2)△ABC的周长为1.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a为底边和a为腰两种情况,当a为底边时,b=c,可得方程的判别式△=0,可求出k值,解方程可求出b、c的值;当a为一腰时,则方程有一根为1,代入可求出k值,解方程可求出b、c的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式△=[-(k+2)]²-4×2k=k²-4k+4=(k-2)²≥0,∴无论k取任何实数值,方程总有实数根.(2)当a=1为底边时,则b=c,∴△=(k-2)²=0,解得:k=2,∴方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∴△ABC的周长为:1+2+2=1.当a=1为一腰时,则方程有一个根为1,∴1-(k+2)+2k=0,解得:k=1,∴方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∴1、1、2不能构成三角形,综上所述:△ABC的周长为1.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学1.1机械运动(第2课时)
- 算法设计与分析 课件 5.4.2-动态规划-0-1背包问题-动态规划求解
- 2024年江西客运资格证种类
- 2024年客运从业资格证什么样子
- 2024年客运司机从业资格证
- 2024年长沙客运实操考试
- 吉首大学《教师礼仪与修养》2021-2022学年第一学期期末试卷
- 吉首大学《场景速写》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷18
- 吉林艺术学院《全媒体新闻写作》2021-2022学年第一学期期末试卷
- 小班安全《特殊的电话号码》
- 争做新时代好少年主题班会课件(共29张PPT)
- 化工总经理岗位职责
- 饼干喷油机安全操作保养规程
- 国电职称考试水能动力工程考试题库2023版
- 水稻栽培管理技术培训(精简)课件
- 第12讲 隐零点问题处理方法
- 外科护理技术-说课-课件
- 考试通用答题卡-A4可直接打印
- 工程项目全过程跟踪审计实施方案(三篇)
- 浅谈核心素养视角下高中语文课堂的构建
评论
0/150
提交评论