版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省金坛市2023-2024学年九年级数学第一学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列图形中不是中心对称图形的是()A. B. C. D.2.如图,在等腰中,于点,则的值()A. B. C. D.3.在实数3.14,﹣π,,﹣中,倒数最小的数是()A. B. C.﹣π D.3.144.下列计算中正确的是()A. B. C. D.5.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D相交于点C,∠OCA=30°,则图中阴影部分的面积为()A.2π﹣2 B.4π﹣ C.4π﹣2 D.2π﹣6.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为()A. B. C. D.7.一元二次方程的根为()A. B. C. D.8.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.9.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为()A.4 B.2 C.2 D.10.如果一个正多边形的中心角为60°,那么这个正多边形的边数是()A.4 B.5 C.6 D.711.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为,则下面所列方程正确的是()A. B.C. D.12.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>3二、填空题(每题4分,共24分)13.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=°.14.如图是抛物线图象的一部分,抛物线的顶点坐标为,与轴的一个交点为,点和点均在直线上.①;②;③抛物线与轴的另一个交点时;④方程有两个不相等的实数根;⑤;⑥不等式的解集为.上述六个结论中,其中正确的结论是_____________.(填写序号即可)15.已知⊙半径为,点在⊙上,,则线段的最大值为_____.16.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x…-2023…y…8003…当x=-1时,y=__________.17.如图,在中,点分别是边上的点,,则的长为________.18.在一个不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,摇匀后从袋子中任意摸出一个球,摸出_______颜色的球的可能性最大.三、解答题(共78分)19.(8分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.20.(8分)一段路的“拥堵延时指数”计算公式为:拥堵延时指数=,指数越大,道路越堵。高德大数据显示第二季度重庆拥堵延时指数首次排全国榜首。为此,交管部门在A、B两拥堵路段进行调研:A路段平峰时汽车通行平均时速为45千米/时,B路段平峰时汽车通行平均时速为50千米/时,平峰时A路段通行时间是B路段通行时间的倍,且A路段比B路段长1千米.(1)分别求平峰时A、B两路段的通行时间;(2)第二季度大数据显示:在高峰时,A路段的拥堵延时指数为2,每分钟有150辆汽车进入该路段;B路段的拥堵延时指数为1.8,每分钟有125辆汽车进入该路段。第三季度,交管部门采用了智能红绿灯和潮汐车道的方式整治,拥堵状况有明显改善,在高峰时,A路段拥堵延时指数下降了a%,每分钟进入该路段的车辆增加了;B路段拥堵延时指数下降,每分钟进入该路段的车辆增加了a辆。这样,整治后每分钟分别进入两路段的车辆通过这两路段所用时间总和,比整治前每分钟分别进入这两段路的车辆通过这两路段所用时间总和多小时,求a的值.21.(8分)某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?22.(10分)已知正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为1.(1)求反比例函数的解析式;(2)当时,求反比例函数的取值范围23.(10分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.24.(10分)用配方法解下列方程.(1);(2).25.(12分)一次函数y=k1x+b和反比例函数的图象相交于点P(m−1,n+1),点Q(0,a)在函数y=k1x+b的图象上,且m,n是关于x的方程ax2−(3a+1)x+2(a+1)=0的两个不相等的整数根(其中a为整数),求一次函数和反比例函数的解析式.26.如图,转盘A中的4个扇形的面积相等,转盘B中的3个扇形面积相等.小明设计了如下游戏规则:甲、乙两人分别任意转动转盘A、B一次,当转盘停止转动时,将指针所落扇形中的2个数相乘,如果所得的积是偶数,那么是甲获胜;如果所得的积是奇数,那么是乙获胜.这样的规则公平吗?为什么?
参考答案一、选择题(每题4分,共48分)1、B【分析】在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【详解】A、C、D都是中心对称图形;不是中心对称图形的只有B.故选B.【点睛】本题属于基础应用题,只需学生熟知中心对称图形的定义,即可完成.2、D【分析】先由,易得,由可得,进而用勾股定理分别将BD、BC长用AB表示出来,再根据即可求解.【详解】解:∵,,∴,∴,又∵,∴,在中,,∴,故选:D【点睛】本题主要考查了解三角形,涉及了等腰三角形性质和勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.3、A【解析】先根据倒数的定义计算,再比较大小解答.【详解】解:在3.14,﹣π,,﹣中,倒数最小的数是两个负数中一个,所以先求两个负数的倒数:﹣π的倒数是﹣≈﹣0.3183,﹣的倒数是﹣≈﹣4472,所以﹣>﹣,故选:A.【点睛】本题考查了倒数的定义.解题的关键是掌握倒数的定义,会比较实数的大小.4、D【分析】直接利用二次根式混合运算法则分别判断得出答案.【详解】A、无法计算,故此选项不合题意;B、,故此选项不合题意;C、,故此选项不合题意;D、,正确.故选D.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.5、A【分析】从图中明确S阴=S半-S△,然后依公式计算即可.【详解】∵∠AOB=90°,∴AB是直径,连接AB,根据同弧对的圆周角相等得∠OBA=∠C=30°,由题意知OB=2,∴OA=OBtan∠ABO=OBtan30°=2,AB=AO÷sin30°=4即圆的半径为2,∴阴影部分的面积等于半圆的面积减去△ABO的面积,故选A.【点睛】辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.6、C【解析】由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.7、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.8、B【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中球的总数为:2+3=5,有2个黄球,∴从袋子中随机摸出一个球,它是黄球的概率为:.故选B.9、C【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=1BD,再证得四边形OADB是矩形,利用AC⊥x轴得到C(1,1),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】解:作BD⊥AC于D,如图,∵ABC为等腰直角三角形,∴BD是AC的中线,∴AC=1BD,∵CA⊥x轴于点A,∵AC⊥x轴,BD⊥AC,∠AOB=90°,∴四边形OADB是矩形,∴BD=OA=1,∴AC=1,∴C(1,1),把C(1,1)代入y=得k=1×1=1.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.10、C【解析】试题解析:这个多边形的边数为:故选C.11、D【分析】由题意设每年的增长率为x,那么第一年的产值为3500(1+x)万元,第二年的产值3500(1+x)(1+x)万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x,依题意得3500(1+x)(1+x)=5300,即.故选:D.【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x”的含义以及找到题目中的等量关系.12、D【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.【详解】∵当x=1时,y=6;当x=1时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),由表格中的数据知,抛物线开口向下,∴当y<6时,x<1或x>1.故选D.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.二、填空题(每题4分,共24分)13、70【解析】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°.又∵∠AOB=30°,∴∠A1OB=∠A1OA-∠AOB=70°.14、①④【分析】①由对称轴x=1判断;②根据图象确定a、b、c的符号;③根据对称轴以及B点坐标,通过对称性得出结果;③根据的判别式的符号确定;④比较x=1时得出y1的值与x=4时得出y2值的大小即可;⑤由图象得出,抛物线总在直线的下面,即y2>y1时x的取值范围即可.【详解】解:①因为抛物线的顶点坐标A(1,3),所以对称轴为:x=1,则-=1,2a+b=0,故①正确;
②∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故②不正确;
③∵抛物线对称轴为x=1,抛物线与x轴的交点B的坐标为(4,0),∴根据对称性可得,抛物线与x轴的另一个交点坐标为(-2,0),故③不正确;④∵抛物线与x轴有两个交点,∴b2-4ac>0,∴的判别式,=b2-4a(c+3)=b2-4ac-12a,又a<0,∴-12a>0,∴=b2-4ac-12a>0,故④正确;⑤当x=-1时,y1=a-b+c>0;当x=4时,y2=4m+n=0,∴a-b+c>4m+n,故⑤不正确;
⑥由图象得:的解集为x<1或x>4;故⑥不正确;
则其中正确的有:①④.
故答案为:①④.【点睛】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b的值都是利用抛物线的对称轴来确定;②抛物线与x轴的交点个数确定其△的值,即b2-4ac的值:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点.15、【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根据三角形三边关系可得:,∵,∴,∴BE的最大值为:,∴OC的最大值为:.【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.16、3【解析】试题解析:将点代入,得解得:二次函数的解析式为:当时,故答案为:17、1【分析】根据平行线分线段成比例定理即可解决问题.【详解】∵,,∴,,则,,∴,∵,∴.故答案为:1.【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.18、白【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】根据题意,袋子中共6个球,其中有1个红球,2个绿球和3个白球,故将球摇匀,从中任取1球,
①恰好取出红球的可能性为
,
②恰好取出绿球的可能性为
,
③恰好取出白球的可能性为
,
摸出白颜色的球的可能性最大.故答案是:白.【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.三、解答题(共78分)19、(1)见解析(2)【分析】(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x-2,由在Rt△ABC中,,可得方程:,解此方程即可求得CB的长,继而求得CE的长.【详解】解:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°∴AC⊥BC∵DC=CB∴AD=AB∴∠B=∠D(2)设BC=x,则AC=x-2,在Rt△ABC中,,∴,解得:(舍去).∵∠B=∠E,∠B=∠D,∴∠D=∠E∴CD=CE∵CD=CB,∴CE=CB=.20、(1)平峰时A路段的通行时间是小时,平峰时B路段的通行时间是小时;(2)的值是1.【分析】(1)根据题意,设平峰时B路段通行时间为小时,则平峰时A路段通行时间是,列出方程,解方程即可得到答案;(2)根据题意,先求出整治前A、B路段的时间总和,然后利用含a的代数式求出整治后A、B路段的时间总和,再列出方程,求出a的值.【详解】解:(1)设平峰时B路段通行时间为小时,则平峰时A路段通行时间是,则,解得:,∴(小时);∴平峰时A路段的通行时间是小时,平峰时B路段的通行时间是小时;(2)根据题意,整治前有:高峰时,通过A路段的总时间为:(分钟),高峰时,通过B路段的总时间为:(分钟);整治前的时间总和为:(分钟);整治后有:通过A路段的总时间为:;通过B路段的总时间为:;∴整治后的时间总和为:;∴,整理得:,解得:或(舍去);∴的值是1.【点睛】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是熟练掌握题意,正确列出方程进行解题.注意寻找题目的等量关系进行列方程.21、(1)y=100x(的整数)y=x(的整数);(2)购买22件时,该网站获利最多,最多为1408元.【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当的整数时,y与x的关系式为y=100x;当的整数时,,y=(的整数),∴y与x的关系式为:y=100x(的整数),y=x(的整数)(2)当(的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=,∵a=-3<0,抛物线开口向下,∴y有最大值,当x=时,y取最大值,因为x为整数,根据对称性得:当x=22时,y有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x的取值范围及取值要求是解答此题的关键之处.22、(1);(2).【分析】(1)根据M点的横坐标为1,求出k的值,得到反比例函数的解析式;(2)求出x=2,x=5时y的取值,再根据反比例函数的增减性求出y的取值范围.【详解】(1)正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为.,,反比例函数的解析式为;(2)在反比例函数中,当,当,在反比例函数中,,当时,随的增大而减小,当时,反比例函数的取值范围为.【点睛】此题考查了三个方面:(1)函数图象上点的坐标特征;(2)用待定系数法求函数解析式;(3)反比例函数的增减性.23、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当t=s或s时,△APQ与△ADB相似.【分析】(1)根据正切的定义求出BC,得到点B的坐标;(2)根据△ABC∽△ADB,得到=,代入计算求出AD,得到点D的坐标;(3)分△APQ∽△ABD、△AQP∽△ABD两种情况,根据相似三角形的性质列式计算即可.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵∠ACB=90°,tan∠BAC=,∴=,即=,解得,BC=3,∴点B的坐标为(1,3);(2)如图1,作BD⊥BA交x轴于点D,则∠ACB=∠ABD=90°,又∠A=∠A,∴△ABC∽△ADB,∴=,在Rt△ABC中,AB===5,∴=,解得,AD=,则OD=AD﹣AO=,∴点D的坐标为(,0);(3)存在,由题意得,AP=2t,AQ=﹣t,当PQ⊥AB时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 非公募基金会募捐方案
- 论债务加入制度
- 2024-2025学年江西省上饶市婺源天佑中学高三(上)月考数学试卷(10月份)(含答案)
- 2024年江苏省无锡市中考物理试题含答案
- 地方公务员浙江申论42
- 利用卡普乐积木建构游戏培养幼儿良好学习品质的对策
- 2013年5月26日下午广东省县级以上公务员面试真题
- 宁夏回族自治区申论2018年
- 土地租赁合同范本
- 上海市政法模拟7
- 装修工程监理方案投标方案技术标
- 《复活》 统编版高中语文选择性必修上册
- 宫腔镜手术配合护理查房
- 生产异常管理及分析
- 负弯矩张拉自动生成表格
- 江西省南昌二十八中教育集团2023-2024学年九年级上学期期中英语试卷+
- 医疗设备应急预案及流程
- 启封密闭排放瓦斯方案及安全技术措施
- 2023-2024年湖北省鄂东南联盟高一上学期期中联考物理试题(解析版)
- 2023年康复医学治疗技术(士)考试题库汇总500道含解析253
- 奖牌施工方案
评论
0/150
提交评论