江苏省苏州市园区一中学2023-2024学年数学九上期末预测试题含解析_第1页
江苏省苏州市园区一中学2023-2024学年数学九上期末预测试题含解析_第2页
江苏省苏州市园区一中学2023-2024学年数学九上期末预测试题含解析_第3页
江苏省苏州市园区一中学2023-2024学年数学九上期末预测试题含解析_第4页
江苏省苏州市园区一中学2023-2024学年数学九上期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市园区一中学2023-2024学年数学九上期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,用菱形纸片按规律依次拼成如图图案,第个图案有个菱形纸片,第个图案有个菱形纸片,第个图案有个菱形纸片,按此规律,第个图案中菱形纸片数量为()A. B. C. D.2.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是()A. B. C. D.3.方程的根是()A. B. C., D.,4.如图,是的直径,四边形内接于,若,则的周长为()A. B. C. D.5.如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2 B.5 C.7 D.96.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.则正方形ABCD与正六边形AEFCGH的周长之比为()A.∶3 B.∶1 C.∶ D.1∶7.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.8.如图,从一张腰长为,顶角为的等腰三角形铁皮中剪出一个最大的扇形,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A. B. C. D.9.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x, y=x2-3A.14B.12C.310.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD=8,则OE长为()A.3 B.5 C.2.5 D.4二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠ABC=90°,AB=1,BC=,将△ABC绕点顶C顺时针旋转60°,得到△MNC,连接BM,则BM的长是_____.12.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是______.13.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.14.当_________时,关于的一元二次方程有两个实数根.15.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是_____.16.二次函数图象的对称轴是______________.17.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.18.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是____.三、解答题(共66分)19.(10分)一艘运沙船装载着5000m3沙子,到达目的地后开始卸沙,设平均卸沙速度为v(单位:m3/小时),卸沙所需的时间为t(单位:小时).(1)求v关于t的函数表达式,并用列表描点法画出函数的图象;(2)若要求在20小时至25小时内(含20小时和25小时)卸完全部沙子,求卸沙的速度范围.20.(6分)如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(2,1)、B(5,4)、C(1,8)都是格点.(1)直接写出△ABC的面积;(2)将△ABC绕点B逆时针旋转90°得到△A1BC1,在网格中画出△A1BC1;(3)在图中画出线段EF,使它同时满足以下条件:①点E在△ABC内;②点E,F都是格点;③EF三等分BC;④EF=.请写出点E,F的坐标.21.(6分)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.22.(8分)已知正比例函数y=-3x与反比例函数y=交于点P(-1,n),求反比例函数的表达式23.(8分)学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程的两个根为,由根与系数的关系有,,由此就能快速求出,,···的值了.比如设是方程的两个根,则,,得.小亮的说法对吗?简要说明理由;写一个你最喜欢的元二次方程,并求出两根的平方和;已知是关于的方程的一个根,求方程的另一个根与的值.24.(8分)如图1,点A是x轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点.将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点.连结AC,BC,CD,设点A的横坐标为t,(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段CD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出符合上述条件的点坐标,25.(10分)已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.26.(10分)(1)x2﹣2x﹣3=0(2)cos45°•tan45°+tan30°﹣2cos60°2sin45°

参考答案一、选择题(每小题3分,共30分)1、D【解析】观察图形发现:每增加一个图形,菱形纸片增加4个,从而得到通项公式,代入n=7求解即可.【详解】观察图形发现:第1个图案中有5=4×1+1个菱形纸片;第2个图案中有9=4×2+1个菱形纸片;第3个图形中有13=4×3+1个菱形纸片,…第n个图形中有4n+1个菱形纸片,当n=7时,4×7+1=29个菱形纸片,故选:D.【点睛】属于规律型:图形的变化类,找出图中菱形纸片个数的变化规律是解题的关键.2、D【分析】根据三角形全等的判定定理逐项判断即可.【详解】A、在和中,则,此项不符题意B、在和中,则,此项不符题意C、在和中,则,此项不符题意D、在和中,,但两组相等的对应边的夹角和未必相等,则不能证明,此项符合题意故选:D.【点睛】本题考查了三角形全等的判定定理,熟记各定理是解题关键.3、D【分析】先移项然后通过因式分解法解一元二次方程即可.【详解】或故选:D.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.4、C【分析】如图,连接OD、OC.根据圆心角、弧、弦的关系证得△AOD是等边三角形,则⊙O的半径长为BC=4cm;然后由圆的周长公式进行计算.【详解】解:如图,连接OC、OD.∵AB是⊙O的直径,四边形ABCD内接于⊙O,BC=CD=DA=4,∴弧AD=弧CD=弧BC,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4,∴⊙O的周长=2×4π=8π.故选:C.【点睛】本题考查了圆心角、弧、弦的关系,等边三角形的判定与性质.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等,即四者有一个相等,则其它三个都相等..5、B【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,N与A重合时,DN最小,从而求得EF的最大值为1.3,最小值是2.3,可解答.【详解】解:连接DN,∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,DN最小时,EF最小,∵N与B重合时DN最大,此时DN=DB===13,∴EF的最大值为1.3.∵∠A=90,AD=3,∴DN≥3,∴EF≥2.3,∴EF长度的可能为3;故选:B.【点睛】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.6、A【分析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出.【详解】解:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,内接正方形和内接正六边形的周长比为:4R:6R=∶1.故选:A.【点睛】本题考查了正多边形和圆,找出内接正方形与内接正六边形的边长关系,是解决问题的关键.7、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.8、A【分析】根据等腰三角形的性质得到的长,再利用弧长公式计算出弧的长,设圆锥的底面圆半径为,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到.【详解】过作于,,,,弧的长,设圆锥的底面圆的半径为,则,解得.故选A.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9、C【解析】分析:从四张卡片中,抽出y随x的增大而增大的有y=2x, ∵四张卡片中,抽出y随x的增大而增大的有y=2x, ∴取出的卡片上的函数是y随x的增大而增大的概率是3410、C【分析】根据菱形的性质可得OB=OD,AO⊥BO,从而可判断OE是△DAB的中位线,在Rt△AOB中求出AB,继而可得出OE的长度.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,

∴AO=OC=3,OB=OD=4,AO⊥BO,

又∵点E是AB中点,

∴OE是△DAB的中位线,

在Rt△AOD中,AB==5,

则OE=AD=.

故选C.【点睛】本题考查了菱形的性质及三角形的中位线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.二、填空题(每小题3分,共24分)11、【分析】由旋转的性质得:CA=CM,∠ACM=60°,由三角比可以求出∠ACB=30°,从而∠BCM=90°,然后根据勾股定理求解即可.【详解】解:由旋转的性质得:CA=CM,∠ACM=60°,∵∠ABC=90°,AB=1,BC=,∴tan∠ACB=,CM=AC=,∴∠ACB=30°,∴∠BCM=90°,∴BM==.故答案为:.【点睛】本题考查了图形的变换-旋转,锐角三角函数,以及勾股定理等知识,准确把握旋转的性质是解题的关键.12、【分析】先根据定弦抛物线的定义求出定弦抛物线的表达式,再按图象的平移规律平移即可.【详解】∵某定弦抛物线的对称轴为直线∴某定弦抛物线过点∴该定弦抛物线的解析式为将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是即故答案为:.【点睛】本题主要考查二次函数图象的平移,能够求出定弦抛物线的表达式并掌握平移规律是解题的关键.13、【分析】由题中所给条件证明△ADF△ACG,可求出的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案为.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.14、【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】∵关于的一元二次方程有两个实数根∴解得:故答案为:【点睛】本题考查的是一元二次方程根与系数的关系,当时,有两个实数根;当时,没有实数根.15、【解析】根据概率的概念,由符合条件的人数除以样本容量,可得P(在日常生活中进行垃圾分类)==.故答案为.16、直线【分析】根据二次函数的顶点式直接得出对称轴.【详解】二次函数图象的对称轴是x=1.故答案为:直线x=1【点睛】本题考查的是根据二次函数的顶点式求对称轴.17、.【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.考点:列表法与树状图法.18、【解析】本题应分别求出正方形的总面积和阴影部分的面积,用阴影部分的面积除以总面积即可得出概率.【详解】解:小虫落到阴影部分的概率=,故答案为:.【点睛】本题考查的是概率的公式,用到的知识点为:概率=相应的面积与总面积之比.三、解答题(共66分)19、(1)v=,见解析;(2)200≤v≤1【分析】(1)直接利用反比例函数解析式求法得出答案;(2)直接利用(1)中所求解析式得出v的取值范围.【详解】(1)由题意可得:v=,列表得:v…1011625…t…246…描点、连线,如图所示:;(2)当t=20时,v==1,当t=25时,v==200,故卸沙的速度范围是:200≤v≤1.【点睛】本题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.20、(1)12;(2)见解析;(3)E(2,4),F(7,8).【分析】(1)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;

(2)利用网格特点和旋转的性质画出A、C的对应点A1、C1即可得到△A1BC1;

(3)利用平行线分线段成比例得到CF:BE=2,则EF三等分BC,然后写出E、F的坐标,根据勾股定理求出EF的长度为【详解】解:(1)△ABC的面积=4×7﹣×7×1﹣×3×3﹣×4×4=12;(2)如图,△A1BC1为所作;(3)如图,线段EF为所作,其中E点坐标为(2,4),F点坐标为(7,8),EF的长度为.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了勾股定理.21、(1)李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确,理由见解析.【解析】试题分析:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.试题解析:设其中一段的长度为cm,两个正方形面积之和为cm2,则,(其中),当时,,解这个方程,得,,∴应将之剪成12cm和28cm的两段;(2)两正方形面积之和为48时,,,∵,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.考点:1.一元二次方程的应用;2.几何图形问题.22、.【分析】将点P的坐标代入正比例函数y=-3x中,即可求出n的值,然后将P点坐标代入反比例函数y=中,即可求出反比例函数的表达式.【详解】解:将点P的坐标代入正比例函数y=-3x中,得n=-3×(-1)=3,故P点坐标为(-1,3)将点P(-1,3)代入反比例函数y=中,得3=解得:m=2故反比例函数的解析式为:【点睛】此题考查的是求反比例函数的解析式,掌握用待定系数法求反比例函数的解析式是解决此题的关键.23、(1)小亮的说法不对,理由见解析;(1)方程:,两根平方和为37;(3)c=1,另一根为.【分析】(1)一般情况下可以这样计算、x11+x11的值,但是若有一根为零时,就无法计算的值了;(1)写出一个有实数根的一元二次方程,根据,计算即可;(3)把代入原方程,求出c的值,再根据即可求出另一根的值.【详解】(1)小亮的说法不对.若有一根为零,就无法计算的值了,因为零作除数无意义.(1)所喜欢的一元二次方程.设方程的两个根分别是为,,,.又,∴;(3)把代入原方程,得:.解得:.∵,∴.【点睛】本题考查了根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1,x1x1,反过来也成立,即(x1+x1),x1x1.24、(2)CF=2;(2)①;②;(3)点的坐标为:(22,2),(8,2),(2,2).【分析】(2)由Rt△ABO∽Rt△CAF即可求得CF的长.(2)①点C落在线段CD上,可得Rt△CDD∽Rt△BOD,从而可求t的值.②由于当点C与点E重合时,CE=2,,因此,分和两种情况讨论.(3)分三种情况作出图形讨论即可得到答案.【详解】解:(2)当t=2时,OA=2,∵点B(0,2),∴OB=2.又∵∠BAC=900,AB=2AC,∴Rt△ABO∽Rt△CAF.∴,CF=2.(2)①当OA=t时,∵Rt△ABO∽Rt△CAF,∴.∴.∵点C落在线段CD上,∴Rt△CDD∽Rt△BOD.∴,整理得.解得(舍去).∴当时,点C落在线段CD上.②当点C与点E重合时,CE=2,可得.∴当时,;当时,.综上所述,S与t之间的函数关系式为.(3)(3)点的坐标为:(22,2),(8,2),(2,2).理由如下:如图2,当时,点的坐标为(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论