江苏省无锡市羊尖中学2023年数学九上期末考试模拟试题含解析_第1页
江苏省无锡市羊尖中学2023年数学九上期末考试模拟试题含解析_第2页
江苏省无锡市羊尖中学2023年数学九上期末考试模拟试题含解析_第3页
江苏省无锡市羊尖中学2023年数学九上期末考试模拟试题含解析_第4页
江苏省无锡市羊尖中学2023年数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市羊尖中学2023年数学九上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A'B'C',点A在边B'C上,则∠B'的大小为()A.42° B.48° C.52° D.58°2.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.3.用小立方块搭成的几何体,从正面看和从上面看的形状图如下,则组成这样的几何体需要的立方块个数为()A.最多需要8块,最少需要6块 B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块 D.最多需要9块,最少需要7块4.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如图,平行于x轴的直线AC分别交函数y=x(x≥0)与y=x(x≥0)的图象于B,C两点,过点C作y轴的平行线交y=x(x≥0)的图象于点D,直线DE∥AC交y=x(x≥0)的图象于点E,则=()A. B.1 C. D.3﹣6.用配方法解方程时,应将其变形为()A. B. C. D.7.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B. C. D.8.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠D=110°,则∠AOC的度数为()A.130° B.135° C.140° D.145°9.如图,将两张长为10,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么,菱形周长的最大值为()A. B. C. D.2110.用配方法解方程x2+4x+1=0时,方程可变形为()A. B. C. D.11.二次函数y=x2-2x+3的最小值是()A.-2B.2C.-1D.112.如图,是的直径,,垂足为点,连接交于点,延长交于点,连接并延长交于点.则下列结论:①;②;③点是的中点.其中正确的是()A.①② B.①③ C.②③ D.①②③二、填空题(每题4分,共24分)13.如图,过圆外一点作圆的一条割线交于点,若,,且,则_______.14.若点A(a,b)在双曲线y=上,则代数式ab﹣4的值为_____.15.如图,在中,,,,用含和的代数式表示的值为:_________.16.若A(-2,a),B(1,b),C(2,c)为二次函数的图象上的三点,则a,b,c的大小关系是__________________.(用“<”连接)17.小明同学身高1.5米,经太阳光照射,在地面的影长为2米,他此时测得旗杆在同一地面的影长为12米,那么旗杆高为_________米.18.如图,中,,,,是上一个动点,以为直径的⊙交于,则线段长的最小值是_________.三、解答题(共78分)19.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;(2)如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?20.(8分)小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?(精确到0.1)21.(8分)已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.22.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与两坐标轴分别交于点A、B、C,直线y=﹣x+4经过点B,与y轴交点为D,M(3,﹣4)是抛物线的顶点.(1)求抛物线的解析式.(2)已知点N在对称轴上,且AN+DN的值最小.求点N的坐标.(3)在(2)的条件下,若点E与点C关于对称轴对称,请你画出△EMN并求它的面积.(4)在(2)的条件下,在坐标平面内是否存在点P,使以A、B、N、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(10分)在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是,“和谐距离”是;(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;(3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,△OPQ是“和谐三角形”,且“和谐距离”是2,请描述出点Q所在位置.24.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.25.(12分)如图,(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=20°,∠OAC=80°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2),请回答:∠ADB=°,AB=.(2)请参考以上思路解决问题:如图3,在四边形ABCD中,对角线AC、BD相交于点O,AC⊥AD,AO=6,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.26.总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利y1元,乙店每件衬衫降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值.(2)求y2关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?

参考答案一、选择题(每题4分,共48分)1、B【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=42°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=48°.【详解】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=42°,∴∠B′=90°﹣∠ACA′=48°.故选:B.【点睛】此题主要考查角度的求解,解题的关键是熟知旋转的性质.2、C【分析】连接CD,由直径所对的圆周角是直角,可得CD是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的长可求出sin∠ODC.【详解】设⊙A交x轴于另一点D,连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.3、C【分析】易得这个几何体共有3层,由俯视图可知第一层正方体的个数为4,由主视图可知第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【详解】由主视图可得:这个几何体共有3层,由俯视图可知第一层正方体的个数为4,由主视图可知第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多为3+4+1=8个最少为2+4+1=7个故选C【点睛】本题考查由三视图判断几何体,熟练掌握立体图形的三视图是解题关键.4、C【分析】根据轴对称和中心对称图形的概念可判别.【详解】(A)既不是轴对称也不是中心对称;(B)是轴对称但不是中心对称;(C)是轴对称和中心对称;(D)是中心对称但不是轴对称故选:C5、D【分析】设点A的纵坐标为b,可得点B的坐标为(,b),同理可得点C的坐标为(b,b),D点坐标(,3b),E点坐标(,3b),可得的值.【详解】解:设点A的纵坐标为b,因为点B在的图象上,所以其横坐标满足=b,根据图象可知点B的坐标为(,b),同理可得点C的坐标为(,b),所以点D的横坐标为,因为点D在的图象上,故可得y==3b,所以点E的纵坐标为3b,因为点E在的图象上,=3b,因为点E在第一象限,可得E点坐标为(,3b),故DE==,AB=所以=故选D.【点睛】本题主要考查二次函数的图象与性质.6、D【分析】二次项系数为1时,配一次项系数一半的平方即可.【详解】故选:D【点睛】本题考查的是解一元二次方程的配方法,配方法要先把二次项系数化为1,再配一次项系数一半的平方是关键.7、B【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD与BC间的位置关系,根据平行线分线段成比例定理,得结论.【详解】连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故选B.【点睛】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.8、C【分析】根据“圆内接四边形的对角互补”,由∠D可以求得∠B,再由圆周角定理可以求得∠AOC的度数.【详解】解:∵∠D=110°,∴∠B=180°﹣110°=70°,∴∠AOC=2∠B=140°,故选C.【点睛】本题考查圆周角定理及圆内接四边形的性质,熟练掌握有关定理和性质的应用是解题关键.9、C【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在Rt△ABC中,由勾股定理:x2=(10﹣x)2+22,解得:x=,∴4x=,即菱形的最大周长为cm.故选:C.【点睛】此题考查矩形的性质,本题的解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.10、C【解析】根据配方法的定义即可得到答案.【详解】将原式变形可得:x2+4x+4-3=0,即(x+2)2=3,故答案选C.【点睛】本题主要考查了配方法解一元二次方程,解本题的要点在于将左边配成完全平方式,右边化为常数.11、B【解析】试题解析:因为原式=x1-1x+1+1=(x-1)11,所以原式有最小值,最小值是1.故选B.12、A【分析】根据“同弧所对圆周角相等”以及“等角的余角相等”即可解决问题①,运用相似三角形的判定定理证明△EBC∽△BDC即可得到②,运用反证法来判定③即可.【详解】证明:①∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确;②∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴,故②正确;③∵∠ADB=90°,∴∠BDF=90°,∵DE为直径,∴∠EBD=90°,∴∠EBD=∠BDF,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.故选:A.【点睛】本题考查了圆周角的性质,余角的性质,相似三角形的判定与性质,平行线的判定等知识,知识涉及比较多,但不难,熟练掌握基础的定理性质是解题的关键.二、填空题(每题4分,共24分)13、1【分析】作OD⊥AB于D,由垂径定理得出AD=BD,由三角函数定义得出sin∠OAB=,设OD=4x,则OC=OA=5x,OP=3+5x,由勾股定理的AD=3x,由含30角的直角三角形的性质得出OP=2OD,得出方程3+5x=2×4x,解得x=1,得出BD=AD=3即可.【详解】作OD⊥AB于D,如图所示:则AD=BD,∵sin∠OAB=,∴设OD=4x,则OC=OA=5x,OP=3+5x,AD==3x,∵∠OPA=30,∴OP=2OD,∴3+5x=2×4x,解得:x=1,∴BD=AD=3,∴AB=1;故答案为:1.【点睛】本题看了垂径定理、勾股定理、三角函数定义等知识;熟练掌握垂径定理和勾股定理是解题的关键.14、﹣1【分析】根据反比例函数图象上点的坐标特征得到k=xy,由此求得ab的值,然后将其代入所求的代数式进行求值即可.【详解】解:∵点A(a,b)在双曲线y=上,∴3=ab,∴ab﹣4=3﹣4=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15、【分析】分别在Rt△ABC和Rt△ADC中用AC和的三角函数表示出AB和AD,进一步即可求出结果.【详解】解:在Rt△ABC中,∵,∴,在Rt△ADC中,∵,∴,∴.故答案为:.【点睛】本题考查了三角函数的知识,属于常考题型,熟练掌握正弦的定义是解题的关键.16、a<b<c【分析】先求出二次函数的对称轴,再根据点到对称轴的距离远近即可解答.【详解】由二次函数的解析式可知,对称轴为直线x=-1,且图象开口向上,∴点离对称轴距离越远函数值越大,∵-1-(-2)=1,1-(-1)=2,2-(-1)=3,∴a<b<c,故答案为:a<b<c.【点睛】此题主要考查二次函数图象上点的坐标特征,熟练掌握二次函数的顶点式以及图象上点的坐标特征是解答的关键.17、9【解析】设旗杆高为x米,根据同时同地物高与影长成正比列出比例式,求解即可.【详解】设旗杆高为x米,根据题意得,解得:x=9,故答案为:9【点睛】本题主要考查同一时刻物高和影长成正比.考查利用所学知识解决实际问题的能力.18、【分析】连接AE,可得∠AED=∠BEA=90°,从而知点E在以AB为直径的⊙Q上,继而知点Q、E、C三点共线时CE最小,根据勾股定理求得QC的长,即可得线段CE的最小值.【详解】解:如图,连接AE,则∠AED=∠BEA=90°(直径所对的圆周角等于90°),

∴点E在以AB为直径的⊙Q上,

∵AB=4,

∴QA=QB=2,

当点Q、E、C三点共线时,QE+CE=CQ(最短),

而QE长度不变为2,故此时CE最小,

∵AC=5,

∴,

故答案为:.【点睛】本题考查了圆周角定理和勾股定理的综合应用,解决本题的关键是确定E点运动的轨迹,从而把问题转化为圆外一点到圆上一点的最短距离问题.三、解答题(共78分)19、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.【分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x的值不能为7.理由:假设x=7,则P(和为9)=≠,所以x的值不能为7.【点睛】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.20、(1)汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)他向前行驶了18.3米.【解析】1)连接FC并延长到BA上一点E,即为所求答案;

(2)利用解Rt△AEC求AE,解Rt△ACM,求AM,利用ME=AM-AE求出他行驶的距离.【详解】解:(1)如图所示:汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)∵小明的视角为30°,A建筑物高25米,∴AC=25,tan30°=ACAM=3∴AM=253,∵∠AEC=45°,∴AE=AC=25m,∴ME=AM﹣AE=43.3﹣25=18.3m.则他向前行驶了18.3米.【点睛】本题考查解直角三角形的基本方法,先分别在两个直角三角形中求相关的线段,再求差是解题关键.21、(1)或;(2)C点坐标为:(0,3),D(2,-1);(3)P(,0).【分析】(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可.(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y轴交点即可.(3)根据两点之间线段最短的性质,当P、C、D共线时PC+PD最短,利用相似三角形的判定和性质得出PO的长即可得出答案.【详解】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入得:,解得:m=±1.∴二次函数的解析式为:或.(2)∵m=2,∴二次函数为:.∴抛物线的顶点为:D(2,-1).当x=0时,y=3,∴C点坐标为:(0,3).(3)存在,当P、C、D共线时PC+PD最短.过点D作DE⊥y轴于点E,∵PO∥DE,∴△COP∽△CED.∴,即,解得:∴PC+PD最短时,P点的坐标为:P(,0).22、(1)y=x2﹣6x+5;(2)N(3,);(3)画图见解析,S△EMN=;(4)存在,满足条件的点P的坐标为(3,﹣)或(7,)或(﹣1,).【分析】(1)先确定出点B坐标,最后用待定系数法即可得出结论;(2)先判断出点N是直线BC与对称轴的交点,即可得出结论;(3)先求出点E坐标,最后用三角形面积公式计算即可得出结论;(4)设出点P坐标,分三种情况利用用平行四边形的两条对角线互相平分和中点坐标公式求解即可得出结论.【详解】解:(1)针对于直线y=﹣x+4,令y=0,则0=﹣x+4,∴x=5,∴B(5,0),∵M(3,﹣4)是抛物线的顶点,∴设抛物线的解析式为y=a(x﹣3)2﹣4,∵点B(5,0)在抛物线上,∴a(5﹣3)2﹣4=0,∴a=1,∴抛物线的解析式为y=(x﹣3)2﹣4=x2﹣6x+5;(2)由(1)知,抛物线的解析式为y=(x﹣3)2﹣4,∴抛物线的对称轴为x=3,∵点A,B关于抛物线对称轴对称,∴直线y=﹣x+4与对称轴x=3的交点就是满足条件的点N,∴当x=3时,y=﹣×3+4=,∴N(3,);(3)∵点C是抛物线y=x2﹣6x+5与y轴的交点,∴C(0,5),∵点E与点C关于对称轴x=3对称,∴E(6,5),由(2)知,N(3,),∵M(3,﹣4),∴MN=﹣(﹣4)=,∴S△EMN=MN•|xE﹣xM|=××3=;(4)设P(m,n),∵A(1,0),B(5,0),N(3,),当AB为对角线时,AB与NP互相平分,∴(1+5)=(3+m),(0+0)=(+n),∴m=3,n=﹣,∴P(3,﹣);当BN为对角线时,(1+m)=((3+5),(0+n)=(0+),∴m=7,n=,∴P(7,);当AN为对角线时,(1+3)=(5+m),(0+)=(0+n),∴m=﹣1,n=,∴P(﹣1,),即:满足条件的点P的坐标为(3,﹣)或(7,)或(﹣1,).【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形面积公式,对称性,平行四边形的性质,用方程的思想解决问题是解本题的关键.23、(1)A,B;;(2);(3)点Q在以点O为圆心,4为半径的圆上;或在以点O为圆心,为半径的圆上.【分析】(1)由题意利用“和谐三角形”以及“和谐距离”的定义进行分析求解;(2)由题意可知以BD的中点为圆心,以BD为直径作圆此时可求点E的横坐标t的取值范围;(3)根据题意△OPQ是“和谐三角形”,且“和谐距离”是2,画出图像进行分析.【详解】解:(1)由题意可知当A(2,0),B(0,4)与O构成三角形时满足圆周角定理即能与点O组成“和谐三角形”,此时“和谐距离”为;(2)根据题意作图,以BD的中点为圆心,以BD为直径作圆,可知当E在如图位置时求点E的横坐标t的取值范围,解得点E的横坐标t的取值范围为;(3)如图当PQ为“和谐边”时,点Q在以点O为圆心,为半径的圆上;当OQ为“和谐边”时,点Q在以点O为圆心,4为半径的圆上.【点睛】本题考查圆的综合问题,熟练掌握圆的相关性质以及理解题干定义是解题关键.24、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;

(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;

(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【详解】(1)设抛物线解析式为,当时,,点的坐标为,将点坐标代入解析式得,解得:,抛物线的函数表达式为;(2)由抛物线的对称性得,,当时,,矩形的周长,,,,当时,矩形的周长有最大值,最大值为;(3)如图,当时,点、、、的坐标分别为、、、,矩形对角线的交点的坐标为,直线平分矩形的面积,点是和的中点,,由平移知,是的中位线,,所以抛物线向右平移的距离是1个单位.【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.25、(1)80,8;(2)DC=8【分析】(1)根据平行线的性质可得∠ADB=∠OAC=80°,即可证明△BOD∽△COA,可得,求出AD的长度,再根据角的和差关系得∠ABD=180°﹣∠BAD﹣∠ADB=80°=∠ADB,即可得出AB=AD=8.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论