版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实际问题与一元二次方程探究2两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
分析:甲种药品成本的年平均下降额为
(5000-3000)÷2=1000(元)
乙种药品成本的年平均下降额为
(6000-3600)÷2=1200(元)乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数)解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)2
元,依题意得解方程,得答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?比较:两种药品成本的年平均下降率22.5%(相同)经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?
经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结
类似地这种增长率的问题在实际生活普遍存在,有一定的模式若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为其中增长取+,降低取-例.(2003年,广州市)2003年2月27日《广州日报》报道:2002年底广州市自然保护区覆盖率(即自然保护区面积占全市面积的百分比)为4.65%,尚未达到国家A级标准.因此,市政府决定加快绿化建设,力争到2004年底自然保护区覆盖率达到8%以上.若要达到最低目标8%,则广州市自然保护区面积的年平均增长率应是多少?(结果保留三位有效数字)解:设广州市总面积为1,广州市自然保护区面积年平均增长率为x,根据题意,得1×4.65%(1+x)2=1×8%.
(1+x)2≈1.720.∴1+x≈±1.312.x1≈0.312=31.2%,x2≈-2.312(不合题意,舍去)答:要达到最低目标,自然保护区面积的年平均增长率应为31.2%.练习:1.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程()A.500(1+2x)=720B.500(1+x)2=720
C.500(1+x2)=720
D.720(1+x)2=5002.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为
.B练习:3.美化城市,改善人们的居住环境已成为城市建设的一项重要内容。某城市近几年来通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示)。(1)根据图中所提供的信息回答下列问题:2001年底的绿地面积为
公顷,比2000年底增加了
公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是
____________年;(2)为满足城市发展的需要,计划到2003年底使城区绿地面积达到72.6公顷,试求2002年,2003年两年绿地面积的年平均增长率。20001999199820016042000解:设2002年,2003年两年绿地面积的年平均增长率为x,根据题意,得60(1+x)2=72.6.
(1+x)2=1.21.∴1+x=±1.1.∴
x1=0.1=10%,x2=-2.1(不合题意,舍去)答:2002年,2003年两年绿地面积的年平均增长率为10%.练习:4.某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给出的信息回答:(1)填写完成下表:这20个家庭的年平均收入为______万元;(2)样本中的中位数是______万元,众数是______万元;(3)在平均数、中位数两数中,______更能反映这个地区家庭的年收入水平.(4)要想这20个家庭的年平均收入在2年后达到2.5万元,则每年的平均增长率是多少?年收入/万元0.60.91.01.11.21.31.49.7家庭户数/户0.60.91.01.11.21.31.49.7252015105年收入/万元所占户数比/%112345311.61.21.3中位数解:设年平均增长率为x,根据题意,得1.6(1+x)2=2.5.
(1+x)2=.∴1+x=±1.25.
∴
x1=0.25=25%,x2=-2.25(不合题意,舍去)答:每年的年平均增长率为25%.练习:5、某农户1997年承包荒山若干亩,投资7800元改造后种果树2000棵,其成活率为90%。在今年(注:今年指2000年)夏季全部结果时,随意摘下10棵果树的水果,称得重量如下:(单位:千克)8,9,12,13,8,9,11,10,12,8⑴根据样本平均数估计该农户今年水果的总产量是多少?⑵此水果在市场每千克售1.3元,在水果园每千克售1.1元,该农户用农用车将水果拉到市场出售,平均每天出售1000千克,需8人帮助,每人每天付工资25元.若两种出售方式都在相同的时间内售完全部水果,选择哪种出售方式合理?为什么?⑶该农户加强果园管理,力争到2002年三年合计纯收入达到57000元,求2001年、2002年平均每年的增长率是多少?(纯收入=总收入-总支出)解:(1)样本平均数为∴总产量=2000×90%×10=18000(千克)(2)在果园出售的利润是1.1×18000-7800=12000(元)在市场出售的利润是1.3×18000-7800-(18000÷1000)×8×25=12000(元)所以两种出售方式相同,选择哪一种都可以;(3)设2001年、2002年平均每年的增长率是x,得∴x1=0.50=50%,x2=-3.5(不合题意,舍去)答:2001年、2002年平均每年的增长率是50%.小结1、平均增长(降低)率公式2、注意:(1)1与x的位置不要调换(2)解这类问题列出的方程一般用直接开平方法学无止境迎难而上1.(P53-7)青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率.2.(P58-8)某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.98%,平均每次降息的百分率是多少(精确到0.01%)?课后作业实际问题与一元二次方程(二)面积问题有关面积问题:常见的图形有下列几种:例1、用22cm长的铁丝,折成一个面积为30cm2的矩形。求这个矩形的长与宽.整理后,得x2-11x+30=0解这个方程,得x1=5,x2=6(与题设不符,舍去)答:这个矩形的长是6cm,宽是5cm。由x1=5得由x2=6,得解:设这个矩形的长为xcm,则宽为(cm).根据题意,得例2、在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为540米2,道路的宽应为多少?32m20m则横向的路面面积为
,32m20mx米分析:此题的相等关系是矩形面积减去道路面积等于540米2。解法一、如图,设道路的宽为x米,32x米2纵向的路面面积为
。20x米2注意:这两个面积的重叠部分是x2
米2所列的方程是不是?图中的道路面积不是米2,而是从其中减去重叠部分,即应是米2所以正确的方程是:化简得,其中的x=50超出了原矩形的长和宽,应舍去.取x=2时,道路总面积为:=100(米2)耕地面积==540(米2)答:所求道路的宽为2米。解法二:我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)横向路面为
,32m20mxmxm如图,设路宽为x米,32x米2纵向路面面积为
。20x米2耕地矩形的长(横向)为
,耕地矩形的宽(纵向)为
。相等关系是:耕地长×耕地宽=540米2(20-x)米(32-x)米即化简得:再往下的计算、格式书写与解法1相同。练习1:用一根长22厘米的铁丝,能否折成一个面积是30厘米的矩形?能否折成一个面积为32厘米的矩形?说明理由。2:在一块长80米,宽60米的运动场外围修筑了一条宽度相等的跑道,这条跑道的面积是1500平方米,求这条跑道的宽度。3.如图,在长为40米,宽为22米的矩形地面上,修筑两条同样宽的互相垂直的道路,余下的铺上草坪,要使草坪的面积为760平方米,道路的宽应为多少?40米22米4、如图,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(两条纵向,一条横向,横向与纵向相互垂直),把耕地分成大小相等的六块试验地,要使试验地面积为570m²,问道路的宽为多少?例3、求截去的正方形的边长用一块长28cm、宽20cm的长方形纸片,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体盒子,使它的底面积为180cm2,为了有效地利用材料,求截去的小正方形的边长是多少cm?求截去的正方形的边长分析设截去的正方形的边长为xcm之后,关键在于列出底面(图中阴影部分)长和宽的代数式.结合图示和原有长方形的长和宽,不难得出这一代数式.20-2x28-2x28cm20cm求截去的正方形边长解:设截去的正方形的边长为xcm,根据题意,得
(28-2x)(20-2x)=180x2-24x+95=0解这个方程,得:x1=5,x2=19经检验:x2=19不合题意,舍去.所以截去的正方形边长为5cm.例4:建造一个池底为正方形,深度为2.5m的长方体无盖蓄水池,建造池壁的单价是120元/m2,建造池底的单价是240元/m2,总造价是8640元,求池底的边长.分析:池底的造价+池壁的造价=总造价解:设池底的边长是xm.根据题意得:解方程得:∵池底的边长不能为负数,∴取x=4答:池底的边长是4m.练习、建造成一个长方体形的水池,原计划水池深3米,水池周围为1400米,经过研讨,修改原方案,要把长与宽两边都增加原方案中的宽的2倍,于是新方案的水池容积为270万米3,求原来方案的水池的长与宽各是多少米?700--xx3700-x+2xx+2xx原方案新方案课堂练习:列方程解下列应用题1、学生会准备举办一次摄影展览,在每张长和宽分别为18厘米和12厘米的长方形相片周围镶嵌上一圈等宽的彩纸。经试验,彩纸面积为相片面积的2/3时较美观,求镶上彩纸条的宽。(精确到0.1厘米)2、在宽20米,长32米的矩形地面上修筑同样宽的四条互相垂直的“井”字形道路(如图),余下的部分做绿地,要使绿地面积为448平方米,路宽为多少?
32203、小明把一张边长为10厘米的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子。如果要求长方体的底面面积为81平方厘米,那么剪去的正方形边长为多少?
4、学校课外生物(小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小路(如图),要使种植面积为600平方米,求小道的宽。(精确到0.1米)5、
在长方形钢片上冲去一个长方形,制成一个四周宽相等的长方形框。已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框的框边宽。
XX30cm20cm解:设长方形框的边宽为xcm,依题意,得30×20–(30–2x)(20–2x)=400整理得x2–25+100=0得x1=20,x2=5当=20时,20-2x=-20(舍去);当x=5时,20-2x=10答:这个长方形框的框边宽为5cm列一元二次方程解应题6、放铅笔的V形槽如图,每往上一层可以多放一支铅笔.现有190支铅笔,则要放几层?解:要放x层,则每一层放(1+x)
支铅笔.得x(1+x)=190×2
X+X-380=0解得X1=19,
X2=-20(不合题意)答:要放19层.2列一元二次方程解应题补充练习:(98年北京市崇文区中考题)如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的长和宽各多少米?实际问题与一元二次方程(三)质点运动问题有关“动点”的运动问题”1)关键——以静代动把动的点进行转换,变为线段的长度,2)方法——
时间变路程求“动点的运动时间”可以转化为求“动点的运动路程”,也是求线段的长度;由此,学会把动点的问题转化为静点的问题,是解这类问题的关键.3)常找的数量关系——
面积,勾股定理等;例1在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B同时出发,几秒后⊿PBQ的面积等于8cm2?解:设x秒后⊿PBQ的面积等于8cm2根据题意,得整理,得解这个方程,得所以2秒或4秒后⊿PBQ的面积等于8cm2例2:等腰直角⊿
ABC中,AB=BC=8cm,动点P从A点出发,沿AB向B移动,通过点P引平行于BC,AC的直线与AC,BC分别交于R、Q.当AP等于多少厘米时,平行四边形PQCR的面积等于16cm2?例3:⊿ABC中,AB=3,∠BAC=45°,CD⊥AB,垂足为D,CD=2,P是AB上的一动点(不与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浴珠珠状沐浴剂市场发展预测和趋势分析
- 2024年度供应链管理及服务合同
- 2024年度技术研发保密录像合同范本
- 2024年度游戏开发合同游戏设计要求
- 2024年度巢湖劳动合同续签申请书指南
- 2024年度宠物店品牌合作合同:宠物店与其他品牌之间的合作推广协议
- 2024年度建筑工程施工合同标的及工程描述
- 2024年度人力资源外包合同:保安人员派遣服务协议
- 羽毛掸市场需求与消费特点分析
- 2024年度健身俱乐部会员合同:关于健身俱乐部与会员之间的服务内容、费用等规定
- 中学生心理健康培训课件
- 孙中山诞辰纪念日主题班会主题班会
- 泰国课件完整版本
- 中医医疗技术相关性感染预防与控制考核试题及答案
- (正式版)SH∕T 3541-2024 石油化工泵组施工及验收规范
- 【中考真题】2024年江西省初中学业水平考试历史真题试卷(含答案)
- 浙江省宁波市镇海区2024届九年级上学期期末质量检测数学试卷(含解析)
- 化工行业大数据分析与预测性维护
- 安全教育年度计划养老院(3篇模板)
- 【易错题】苏教版数学六年级上册第5单元《分数四则混合运算》易错题强化训练卷(含答案)
- 云南省高中学业水平考试数学考题分类汇编以及知识点穿插
评论
0/150
提交评论