




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2简单多面体知识点一多面体与棱柱[填一填]1.多面体我们把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台都是简单多面体.2.棱柱(1)棱柱的有关概念两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱.两个互相平行的面叫作棱柱的底面,其余各面叫作棱柱的侧面,棱柱的侧面是平行四边形.两个面的公共边叫作棱柱的棱,其中两个侧面的公共边叫作棱柱的侧棱,底面多边形与侧面的公共顶点叫作棱柱的顶点,与两个底面都垂直的直线夹在两底面间的线段长叫作棱柱的高.(2)棱柱的分类①按底面多边形的边数:棱柱的底面可以是三角形、四边形、五边形……我们把这样的棱柱分别叫作三棱柱、四棱柱、五棱柱…….②按侧棱与底面是否垂直:[答一答]1.有人说:有两个面互相平行,其余各面都是平行四边形的几何体是棱柱.你认为这种说法对吗?提示:这种说法不对.棱柱有两个本质特征:(1)有两个面互相平行;(2)其余各面每相邻两个面的公共边相互平行.正是由于这两个特征,使棱柱的各侧面都是平行四边形,但是有两个面互相平行,其余各面都是平行四边形的几何体未必是棱柱.反例如图.知识点二棱锥[填一填](1)定义有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.这个多边形叫作棱锥的底面,其余各面叫作棱锥的侧面,相邻侧面的公共边叫作棱锥的侧棱,各侧面的公共点叫作棱锥的顶点,过顶点作底面的垂线,顶点与垂足间的线段长叫作棱锥的高.(2)正棱锥如果棱锥的底面是正多边形,且各侧面全等,就称作正棱锥.(3)分类按底面多边形的边数分:底面是三角形、四边形、五边形……的棱锥分别叫作三棱锥、四棱锥、五棱锥…….[答一答]2.有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?为什么?提示:不一定,判断一个几何体是否是棱锥,关键是紧扣棱锥的三个本质特征:(1)有一个面是多边形;(2)其余各面都是三角形;(3)这些三角形有一个公共顶点.这三个特征缺一不可,显然,这种说法不满足(3).反例如图.知识点三棱台[填一填](1)定义用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台.原棱锥的底面和截面叫作棱台的下底面和上底面,其他各面叫作棱台的侧面,相邻侧面的公共边叫作棱台的侧棱,与两个底面都垂直的直线夹在两底面间的线段长叫作棱台的高.(2)正棱台用正棱锥截得的棱台叫作正棱台,正棱台的侧面是全等的等腰梯形,它的高叫作正棱台的斜高.(3)分类按底面多边形的边数分:底面是三角形、四边形、五边形……的棱台分别叫作三棱台、四棱台、五棱台…….[答一答]3.棱台的各侧棱是什么关系?各侧面是什么样的多边形?两个底面是什么关系?提示:棱台的各侧棱延长后交于一点,各侧面是梯形,两个底面是相似的多边形.4.观察下面的几何体,思考问题:图①是棱台吗?图②用任意一个平面去截棱锥,一定能得到棱台吗?提示:图①不是棱台,因为各侧棱延长后不交于一点,图②中只有用平行于底面的平面去截才能得到棱台.1.对于多面体概念的理解,注意以下两个方面(1)多面体是由平面多边形围成的,围成一个多面体至少要四个面.(2)多面体是一个“封闭”的几何体.2.对于棱柱的定义注意以下三个方面(1)有两个面平行,各侧棱都平行,各侧面都是平行四边形.(2)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱.(3)从运动的观点看,棱柱可以看成是一个平面多边形,从一个位置沿一条不与其共面的直线运动到另一位置时,形成的几何体.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.类型一概念的理解与应用【例1】下列关于多面体的说法正确的个数为________.①所有的面都是平行四边形的几何体为棱柱;②棱台的侧面一定不会是平行四边形;③底面是正三角形,且侧棱相等的三棱锥是正三棱锥;④棱台的各条侧棱延长后一定相交于一点;⑤棱柱的每一个面都不会是三角形.【解析】①中两个四棱柱放在一起,如图所示,能保证每个面都是平行四边形,但并不是棱柱.故①错.②中棱台的侧面一定是梯形,不可能为平行四边形,②正确.根据棱锥的概念知③正确.根据棱台的概念知④正确.棱柱的底面可以是三角形,故⑤不正确.正确的个数为3.【答案】3规律方法有关棱柱、棱锥、棱台结构特征的判断方法(1)举反例法:结合棱柱、棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点下面属于多面体的是①②.(将正确答案的序号填在横线上)①建筑用的方砖;②埃及的金字塔;③茶杯;④球.解析:①②属于多面体;③④属于旋转体.类型二棱柱的结构特征【例2】如图所示,已知长方体ABCD-A1B1C1D1(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.【思路探究】判断一个几何体是否是棱柱,关键是验证几何体是否满足棱柱的定义.如果是棱柱,一是要找到两个面平行,二是要判定其余各个面的公共边平行;如果不是棱柱,则需指出不满足定义或举出反例.【解】(1)是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面都是四边形,其余各面都是矩形,矩形当然是平行四边形,并且几何体的四条侧棱互相平行.(2)截面BCFE上方部分是棱柱,且是三棱柱BEB1-CFC1,其中△BEB1和△CFC1是底面.截面BCFE下方部分也是棱柱,且是四棱柱ABEA1-DCFD1,其中四边形ABEA1和四边形DCFD1是底面.规律方法棱柱的两个主要结构特征:(1)有两个面互相平行;(2)各侧棱都互相平行,各侧面都是平行四边形.通俗地讲,就是棱柱“两头一样平,上下一样粗”.下列说法中,正确的是(C)A.底面是正多边形的棱柱是正棱柱B.棱柱中两个互相平行的面一定是棱柱的底面C.棱柱的各个面中,至少有两个面互相平行D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形解析:正棱柱是底面是正多边形且侧棱垂直于底面的棱柱,故A错误;棱柱中可以有两个侧面互相平行,不一定是底面,同时底面可以是平行四边形,故B,D错;由棱柱的概念知C正确.故正确答案为C.类型三棱锥的几何特征【例3】已知正三棱锥V-ABC的底面边长为6,高VO=4,D为AB的中点,过点V,C,D作截面,试求该截面的周长和面积.【思路探究】依据题意画出图形,利用高与侧棱、底面等边三角形相应的外接圆半径,高与斜高、底面等边三角形相应边心距构成的直角三角形进行计算.【解】由题意画出图形,如图所示,其中VO=4,AB=BC=CA=6,∵△ABC是等边三角形,O是中心,∴OC=2eq\r(3),OD=eq\r(3),在Rt△VOC和Rt△VOD中,由勾股定理,得VC=eq\r(42+2\r(3)2)=2eq\r(7),VD=eq\r(42+\r(3)2)=eq\r(19),∴截面△VCD的周长为VC+CD+VD=2eq\r(7)+3eq\r(3)+eq\r(19),面积为eq\f(1,2)CD·VO=eq\f(1,2)×3eq\r(3)×4=6eq\r(3).规律方法1.如图,在正三棱锥的计算中,常要研究基本量:底面边长AB、侧棱长PC、高PO、斜高PD、边心距OD、底面外接圆半径OC等.2.含有这些基本量的直角三角形有Rt△POD、Rt△POC、Rt△PDB、Rt△AOD等.3.通过解这些直角三角形可求出基本量,进而完成解题.4.记住一些结论可提高解题速度.如若AB=a,则OC=eq\f(\r(3),3)a,OD=eq\f(\r(3),6)a,CD=eq\f(\r(3),2)a等.在四棱锥的四个侧面中,直角三角形最多可有(D)A.1个 B.2个C.3个 D.4个解析:如图所示,在长方体ABCD-A1B1C1D1中取四棱锥A1-ABCD类型四棱台的几何特征【例4】已知四棱台的上底面、下底面分别是边长为4,8的正方形,各侧棱长均为eq\r(17),求四棱台的高.【思路探究】思路一:用“补形法”,将棱台还原为棱锥,结合平面几何知识求解;思路二:依题意,作出棱台的对角面,化为平面几何的计算问题.【解】解法一:如图所示,设O1,O分别为正方形A1B1C1D1和正方形ABCD的中心,则P,O1,OA1O1=eq\f(1,2)A1C1=eq\f(1,2)×4eq\r(2)=2eq\r(2),AO=eq\f(1,2)AC=eq\f(1,2)×8eq\r(2)=4eq\r(2).∵△PA1O1∽△PAO,∴eq\f(A1O1,AO)=eq\f(PA1,PA),即eq\f(PA1,PA)=eq\f(1,2).又∵PA=PA1+A1A=2PA1,∴PA1=A1A=eq\r(17),在Rt△PO1A1中PO1=eq\r(PA\o\al(2,1)-A1O\o\al(2,1))=eq\r(\r(17)2-2\r(2)2)=3.又∵eq\f(PO1,PO)=eq\f(A1O1,AO),∴PO=6,∴OO1=3.∴四棱台的高为3.解法二:如图所示,在截面ACC1A1中,A1A=CC1=eq\r(17),A1C1=4eq\r(2),AC=8eq\r(2),过A1作A1E⊥AC交AC于点E,则A1E就是四棱台的高.在Rt△A1EA中,AE=eq\f(1,2)×(8eq\r(2)-4eq\r(2))=2eq\r(2),A1A=eq\r(17),∴A1E=eq\r(A1A2-AE2)=eq\r(\r(17)2-2\r(2)2)=3,即四棱台的高为3.规律方法正棱台的计算1.将正棱台补成棱锥(1)大、小棱锥中用解直角三角形方法求解;(2)两棱锥之间运用“对应高之比等于相似比”及相似形知识求解.2.在正棱台中作直角梯形,进而化为矩形和直角三角形求解.下列几何体是棱台的是④(填序号).解析:①③都不是由棱锥截得的,不符合棱台的定义,故①③不满足题意,②中的截面不平行于底面,不符合棱台的定义,故②不满足题意,④符合棱台的定义,故填④.——多维探究系列——几何体的侧面或表面展开图问题展开图问题是转化思想的体现,是把立体几何问题转化为平面几何问题的重要手段之一,所以要重视这种问题的应用.【例5】如图是三个几何体的侧面展开图,请问各是什么几何体?【思路分析】图①中,有5个平行四边形,而且还有2个全等的五边形,符合棱柱特点;图②中,有5个三角形,且有共同的顶点,还有1个五边形,符合棱锥特点;图③中,有3个梯形,还有2个相似的三角形,符合棱台的特点.【精解详析】由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.【解后反思】(1)解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.(2)若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.(3)若是给出表面展开图,则可把上述程序逆推.某城市中心广场主题建筑为一三棱锥,且所有边长均为10m,如图所示,其中E,F分别为AD,BC的中点.(1)画出该几何体的表面展开图,并注明字母;(2)为迎接国庆,城管部门拟对该建筑实施亮化工程,现预备从底边BC中点F处分别过AC,AB上某点向AD中点E处架设LED灯管,所用灯管长度最短为多少?解:(1)该几何体的表面展开图为(2)由该几何体的展开图知,四边形ACBD为菱形,四边形ABCD为菱形.若使由F向E所架设灯管长度最短,可由其展开图中连接线段EF.这两条线段均为10,故所用灯管最短为20m.一、选择题1.下列几何体中棱柱有(D)A.5个B.4个C.3个D.2个2.在四面体SABC中,能作为棱锥底面的三角形的个数是(D)A.1B.2C.3D.4解析:四面体的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度四川省护师类之护师(初级)模拟预测参考题库及答案
- 汽车维修工职业技能培训大纲试题及答案
- Unit 8 Is there a post office near here Section B (2a~2c) 教学设计-2023-2024学年人教版英语七年级下册
- 汽车美容行业客户心理分析试题及答案
- 二手车评估师的资格与能力标准考核试题及答案
- 2024秋一年级语文上册 识字(二)6 画教学设计 新人教版
- Module 12 Revision 教学设计 2023-2024学年外研版七年级英语下册
- 古代文学史理论与实践结合试题及答案
- 有效备考2024年计算机基础考试的试题及答案
- 绩效面谈记录质量评估管理制度
- 产学合作协同育人项目教学内容和课程体系改革项目申报书模板-基于产业学院的实践应用型人才培养
- 2023年上海市普通高中学业水平合格性考试地理试题及答案
- 杨必胜-无人系统自主协同三维信息获取
- 2024年烟叶制丝操作工(二级)理论考试题库大全-上(单选题)
- T-CPQS C010-2024 鉴赏收藏用潮流玩偶及类似用途产品
- NB/T 11448-2023矿用乳化液配比装置
- 房地产中介服务质量调研报告
- 2023年复合型胶粘剂项目安全评价报告
- DZ∕T 0215-2020 矿产地质勘查规范 煤(正式版)
- 【初中+语文】中考语文一轮专题复习+《名著阅读+女性的力量》课件
- 城市道路桥梁工程施工质量验收规范 DG-TJ08-2152-2014
评论
0/150
提交评论