江西省宜春市靖安中学2024届高考仿真模拟数学试卷含解析_第1页
江西省宜春市靖安中学2024届高考仿真模拟数学试卷含解析_第2页
江西省宜春市靖安中学2024届高考仿真模拟数学试卷含解析_第3页
江西省宜春市靖安中学2024届高考仿真模拟数学试卷含解析_第4页
江西省宜春市靖安中学2024届高考仿真模拟数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春市靖安中学2024届高考仿真模拟数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题2.当时,函数的图象大致是()A. B.C. D.3.已知函数满足,设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知数列满足,则()A. B. C. D.5.在中,是的中点,,点在上且满足,则等于()A. B. C. D.6.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.17.已知随机变量服从正态分布,,()A. B. C. D.8.已知全集,函数的定义域为,集合,则下列结论正确的是A. B.C. D.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.1210.若,则“”的一个充分不必要条件是A. B.C.且 D.或11.已知复数,则的虚部为()A. B. C. D.112.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中是虚数单位.若的实部与虚部相等,则实数的值为__________.14.满足约束条件的目标函数的最小值是.15.已知等差数列满足,,则的值为________.16.已知实数,对任意,有,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在最新公布的湖南新高考方案中,“”模式要求学生在语数外3门全国统考科目之外,在历史和物理2门科目中必选且只选1门,再从化学、生物、地理、政治4门科目中任选2门,后三科的高考成绩按新的规则转换后计入高考总分.相应地,高校在招生时可对特定专业设置具体的选修科目要求.双超中学高一年级有学生1200人,现从中随机抽取40人进行选科情况调查,用数字1~6分别依次代表历史、物理、化学、生物、地理、政治6科,得到如下的统计表:序号选科情况序号选科情况序号选科情况序号选科情况11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)双超中学规定:每个选修班最多编排50人且尽量满额编班,每位老师执教2个选修班(当且仅当一门科目的选课班级总数为奇数时,允许这门科目的1位老师只教1个班).已知双超中学高一年级现有化学、生物科目教师每科各8人,用样本估计总体,则化学、生物两科的教师人数是否需要调整?如果需要调整,各需增加或减少多少人?(2)请创建列联表,运用独立性检验的知识进行分析,探究是否有的把握判断学生“选择化学科目”与“选择物理科目”有关.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其热门人文专业的招生简章中明确要求,仅允许选修了历史科目,且在政治和地理2门中至少选修了1门的考生报名.现从双超中学高一新生中随机抽取3人,设具备高校专业报名资格的人数为,用样本的频率估计概率,求的分布列与期望.18.(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.19.(12分)已知,,为正数,且,证明:(1);(2).20.(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.21.(12分)在角中,角A、B、C的对边分别是a、b、c,若.(1)求角A;(2)若的面积为,求的周长.22.(10分)设都是正数,且,.求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.2、B【解析】由,解得,即或,函数有两个零点,,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.3、B【解析】

结合函数的对应性,利用充分条件和必要条件的定义进行判断即可.【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题.4、C【解析】

利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.5、B【解析】

由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴故选B.【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.6、B【解析】

过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.7、B【解析】

利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故选:B.【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.8、A【解析】

求函数定义域得集合M,N后,再判断.【详解】由题意,,∴.故选A.【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.9、C【解析】

由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。10、C【解析】,∴,当且仅当时取等号.故“且”是“”的充分不必要条件.选C.11、C【解析】

先将,化简转化为,再得到下结论.【详解】已知复数,所以,所以的虚部为-1.故选:C【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.12、D【解析】

由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,∴,即,∴,∴数列是以为公比的等比数列,而,所以,∴当时,,故选:D.【点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

直接由复数代数形式的乘法运算化简,结合已知条件即可求出实数的值.【详解】解:的实部与虚部相等,所以,计算得出.故答案为:【点睛】本题考查复数的乘法运算和复数的概念,属于基础题.14、-2【解析】

可行域是如图的菱形ABCD,代入计算,知为最小.15、11【解析】

由等差数列的下标和性质可得,由即可求出公差,即可求解;【详解】解:设等差数列的公差为,,又因为,解得故答案为:【点睛】本题考查等差数列的通项公式及等差数列的性质的应用,属于基础题.16、-1【解析】

由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解.【详解】由,且,则,又,所以,令得:,所以,故答案为:.【点睛】本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不需调整(2)列联表见解析;有的把握判断学生“选择化学科目”与“选择物理科目”有关(3)详见解析【解析】

(1)可估计高一年级选修相应科目的人数分别为120,2,推理得对应开设选修班的数目分别为15,1.推理知生物科目需要减少4名教师,化学科目不需要调整.(2)根据列联表计算观测值,根据临界值表可得结论.(3)经统计,样本中选修了历史科目且在政治和地理2门中至少选修了一门的人数为12,频率为.用频率估计概率,则,根据二项分布概率公式可得分布列和数学期望.【详解】(1)经统计可知,样本40人中,选修化学、生物的人数分别为24,11,则可估计高一年级选修相应科目的人数分别为120,2.根据每个选修班最多编排50人,且尽量满额编班,得对应开设选修班的数目分别为15,1.现有化学、生物科目教师每科各8人,根据每位教师执教2个选修班,当且仅当一门科目的选课班级总数为奇数时,允许这门科目的一位教师执教一个班的条件,知生物科目需要减少4名教师,化学科目不需要调整.(2)根据表格中的数据进行统计后,制作列联表如下:选物理不选物理合计选化学19524不选化学61016合计251540则,有的把握判断学生”选择化学科目”与“选择物理科目”有关.(3)经统计,样本中选修了历史科目且在政治和地理2门中至少选修了一门的人数为12,频率为.用频率估计概率,则,分布列如下:01230.3430.4410.1890.021数学期望为.【点睛】本题主要考查了离散型随机变量的期望与方差,考查独立性检验,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1),;(2).【解析】

(1)根据面积公式和数量积性质求角及最大边;(2)根据的长度求出,再根据面积比值求,从而求出.【详解】(1)在中,由,得,由,得,所以,所以,,因为在中,,所以,因为(当且仅当时取等),所以长的最小值为;(2)在三角形中,因为为中线,所以,,所以,因为,所以,所以,由(1)知,所以,或,,所以,因为为角平分线,,,或2,所以,或,所以.【点睛】本题考查了平面向量数量积的性质及其运算,余弦定理解三角形及三角形面积公式的应用,属于中档题.19、(1)证明见解析;(2)证明见解析.【解析】

(1)利用均值不等式即可求证;(2)利用,结合,即可证明.【详解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【点睛】本题考查利用均值不等式证明不等式,涉及的妙用,属综合性中档题.20、(1),;(2),,.【解析】

(1)把曲线的参数方程与曲线的极坐标方程分别转化为直角坐标方程;(2)利用图象求出三个点的极径与极角.【详解】解:(1)由消去参数得,即曲线的普通方程为,又由得即为,即曲线的平面直角坐标方程为(2)∵圆心到曲线:的距离,如图所示,所以直线与圆的切点以及直线与圆的两个交点,即为所求.∵,则,直线的倾斜角为,即点的极角为,所以点的极角为,点的极角为,所以三个点的极坐标为,,.【点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化,消去参数方程中的参数,就可把参数方程化为普通方程,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论