江西省鹰潭市名校2023-2024学年八年级数学第一学期期末统考试题含解析_第1页
江西省鹰潭市名校2023-2024学年八年级数学第一学期期末统考试题含解析_第2页
江西省鹰潭市名校2023-2024学年八年级数学第一学期期末统考试题含解析_第3页
江西省鹰潭市名校2023-2024学年八年级数学第一学期期末统考试题含解析_第4页
江西省鹰潭市名校2023-2024学年八年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省鹰潭市名校2023-2024学年八年级数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在中,,点是边上两点,且垂直平分平分,则的长为()A. B. C. D.2.ABC的内角分别为A、B、C,下列能判定ABC是直角三角形的条件是()A.A2B3C B.C2B C.A:B:C3:4:5 D.ABC3.世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输兆数据,依题意,可列方程是()A. B.C. D.4.已知多项式,则b、c的值为()A., B., C., D.,5.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.6.在平面直角坐标系中,点与点关于轴对称,则()A., B.,C., D.,7.已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是()A.平均数是2 B.众数和中位数分别是-1和2.5C.方差是16 D.标准差是8.下列说法正确的是()A.是最简二次根式 B.的立方根不存在C.点在第四象限 D.是一组勾股数9.如图,的平分线与的垂直平分线相交于点,于点,,,则的长为()A. B. C. D.10.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm11.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G12.下列“表情图”中,属于轴对称图形的是A. B. C. D.二、填空题(每题4分,共24分)13.已知点是直线上的一个动点,若点到两坐标轴的距离相等,则点的坐标是__________.14.如图,在中,点时和的角平分线的交点,,,则为__________.15.如图,中,,,,、分别是、上的动点,则的最小值为______.16.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.17.若,,则的值为_________.18.铁路部门规定旅客免费携带行李箱的长宽高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽之比为3:2,则该行李箱长度的最大值是cm.三、解答题(共78分)19.(8分)已知等边和等腰,,.(1)如图1,点在上,点在上,是的中点,连接,,则线段与之间的数量关系为;(2)如图2,点在内部,点在外部,是的中点,连接,,则(1)中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由.(3)如图3,若点在内部,点和点重合,点在下方,且为定值,当最大时,的度数为.20.(8分)如图,在中,∠CAB=90°,AC=AB,射线AM与CB交于H点,分别过C点、B点作CF⊥AM,BE⊥AM,垂足分别为F点和E点.(1)若AF=4,AE=1,请求出AB的长;(2)若D点是BC中点,连结FD,求证:BE=DF+CF.21.(8分)老师在黑板上书写了一个式子的正确计算结果随后用手遮住了原式的一部分,如图.(1)求被手遮住部分的式子(最简形式);(2)原式的计算结果能等于一1吗?请说明理由.22.(10分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)请根据以上信息直接在答题卡中补全条形统计图;(3)扇形统计图中m的值是,类别D所对应的扇形圆心角的度数是度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.23.(10分)如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,设运动时间为t秒,过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)在动点P、Q运动的过程中,以B、Q、E为顶点的三角形是直角三角形,直按写出t的值;(3)设△PEQ的面积为S,求S与时间t的函数关系,并指出自变量t的取值范围.24.(10分)在如图所示的直角坐标系中,(1)描出点、、,并用线段顺次连接点、、,得;(2)在直角坐标系内画出关于轴对称的;(3)分别写出点、点的坐标.25.(12分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.26.永州市在进行“六城同创”的过程中,决定购买两种树对某路段进行绿化改造,若购买种树2棵,种树3棵,需要2700元;购买种树4棵,种树5棵,需要4800元.(1)求购买两种树每棵各需多少元?(2)考虑到绿化效果,购进A种树不能少于48棵,且用于购买这两种树的资金不低于52500元.若购进这两种树共100棵.问有哪几种购买方案?

参考答案一、选择题(每题4分,共48分)1、A【分析】根据CE垂直平分AD,得AC=CD,再根据等腰在三角形的三线合一,得,结合角平分线定义和,得,则.【详解】∵CE垂直平分AD∴AC=CD=6cm,∵CD平分∴∴∴∴∴故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.2、D【解析】根据直角三角形的性质即可求解.【详解】若ABC又AB+C=180°∴2∠C=180°,得∠C=90°,故为直角三角形,故选D.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知三角形的内角和.3、A【分析】直接利用在峰值速率下传输500兆数据,5G网络比4G网络快45秒得出等式进而得出答案.【详解】解:设网络的峰值速率为每秒传输兆数据,依题意,可列方程是:.故选A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确等量关系得出等式是解题关键.4、C【分析】根据多项式乘多项式法则将等式左侧展开,然后对应系数即可求出结论.【详解】解:∵∴∴,故选C.【点睛】此题考查的是整式的乘法,掌握多项式乘多项式法则是解决此题的关键.5、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.6、A【分析】利用关于y轴对称点的性质得出答案.【详解】解:∵点A(m,1)与点B(2,n)关于y轴对称,

∴m=-2,n=1.

故选:A.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键,对称点的坐标规律是:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(1)关于原点对称的点,横坐标与纵坐标都互为相反数.7、C【分析】分别求出这组数据的平均数、众数、中位数、方差和标准差即可进行判断.【详解】解:(-1+2+-1+5+3+4)÷6=2,所以平均数是2,故A选项不符合要求;众数是-1,中位数是(2+3)÷2=2.5,故B选项不符合要求;,故C选项符合要求;,故D选项不符合要求.故选:C【点睛】本题主要考查的是平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解题的关键.8、C【分析】根据最简二次根式的定义、立方根的性质、坐标和象限的关系、勾股定理即可判断结果.【详解】解:A、=,不是最简二次根式,故选项不符合;B、的立方根是,故选项不符合;C、点在第四象限,正确,故选项符合;D、,不是勾股数,故选项不符合;故选C.【点睛】本题考查了最简二次根式、立方根、坐标和象限、勾股数,解题的关键是正确理解对应概念,属于基础题.9、A【解析】连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.【详解】如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=11,AC=5,∴BE=×(11-5)=1.故选:A.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题10、C【分析】根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【详解】∵ED⊥AB,∠A=30°,∴AE=2ED.∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.故选C.【点睛】本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.11、A【分析】三角形的重心即为三角形中线的交点,故重心一定在中线上,即可得出答案.【详解】解:如图由勾股定理可得:AN=BN=,BM=CM=∴N,M分别是AB,BC的中点∴直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.12、D【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,A、B,C不是轴对称图形;D是轴对称图形.故选D.二、填空题(每题4分,共24分)13、或【解析】到两坐标轴距离相等,说明此点的横纵坐标的绝对值相等,那么x=y,或x=-y.据此作答.【详解】设(x,y).∵点为直线y=−2x+4上的一点,∴y=−2x+4.又∵点到两坐标轴距离相等,∴x=y或x=−y.当x=y时,解得x=y=,当x=−y时,解得y=−4,x=4.故点坐标为或故答案为:或【点睛】考查一次函数图象上点的坐标特征,根据点到两坐标轴的距离相等,列出方程求解即可.14、130°【分析】根据角平分线得到∠DBC、∠DCB的度数,再根据三角形的内角和计算得出∠BDC的度数.【详解】∵BD是的平分线,,∴∠DBC=∠ABC=30,同理:∠DCB=20,∴∠BDC=180-∠DBC-∠DCB=130°,故答案为:130°.【点睛】此题考查角平分线性质,三角形内角和性质,正确掌握性质定理并运用解题是关键.15、【分析】作BE⊥AC垂足为E,交AD于F,此时CF+EF最小,利用面积法即可求得答案.【详解】作BE⊥AC垂足为E,交AD于F,∵AB=AC,BD=DC,

∴AD⊥BC,

∴FB=FC,

∴CF+EF=BF+EF,

∵线段BE是垂线段,根据垂线段最短,

∴点E、点F就是所找的点;∵,∴,∴CF+EF的最小值.故答案为:.【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、垂线段最短等知识,掌握应用面积法求高是解决这个问题的关键.16、100°【分析】依据轴对称的性质可得到∠C=∠C′,然后依据三角形的内角和定理求解即可.【详解】解:∵△ABC与△A′B′C′关于直线l对称,

∴∠C=∠C′=30°.

∴∠B=180°-∠A-∠C=180°-50°-30°=100°.

故答案为100°.【点睛】本题主要考查的是轴对称的性质、三角形的内角和定理,熟练掌握相关知识是解题的关键.17、24【分析】根据同底数幂的乘法逆运算即可求解.【详解】故答案为:24【点睛】本题考查了同底数幂乘法运算法则,底数不变,指数相加.18、1.【分析】设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.【详解】解:设长为3xcm,宽为2xcm,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为1.故答案为1cm.三、解答题(共78分)19、(1);(2)成立,理由见解析;(3)【分析】(1)根据等边三角形的性质,,,可得是等边三角形,是的中点,利用等边三角形三线合一性质,以及得出,所以PD是中位线,得出点D是BC的中点,AD=CE,可得出结论.(2)作辅助线,延长ED到F,使得,使得是等边三角形,PD是的中位线,通过证明三角形全等得出可证明结论.(3)作出等腰,由旋转模型证明三角形,利用P、C、K三点共线时,PK最大,即PD最大可求解得.【详解】(1)根据图1,在等边和等腰中,,,,,是等边三角形,是的中点,,,,PD是中位线分别是的中点,,故答案为:.(2)结论成立.理由:如下图中,延长ED到F,使得,连接FC,BF,,是等边三角形,,在和中,,,故答案为:结论成立;(3)作,且,连接PK,DK,则为等腰三角形,在和中,,即为定值.P、C、K三点共线时,PK最大,即PD最大,此时,,故答案为:.【点睛】考查了全等三角形的判定和性质应用,等腰三角形三线合一的性质应用,等边三角形的判定和性质,中点和中位线的性质,利用了三线共点判定线段最大,熟记性质和判定定理是解决问题的关键.20、(1);(2)见解析【分析】(1)证明△ABE≌△CAF得BE=AF,进而由勾股定理求得AB;(2)连接AD、DE,证明△ADE≌△CDF得到DE=DF,进而得EF=DF,进而得出结论.【详解】解:(1)∵CF⊥AM,BE⊥AM,∴∠AEB=∠CFA=90°,∵∠CAB=90°,∴∠BAE+∠ABE=∠BAE+∠CAF=90°,∴∠ABE=∠CAF,∵AC=AB,∴△ABE≌△CAF(AAS),∴BE=AF=4,∴AB=;(2)连接AD、DE,∵△ABE≌△CAF,∴AE=CF,∵,∠CAB=90°,AC=AB,D是BC的中点,∴AD=CD,∠ADC=90°,∵CF⊥AM,∴∠CFA=90°,∵∠AHD=∠CHF,∴∠DAE=∠DCF,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∴∠EDF=∠ADC=90°,∴EF=DF,∵AF=AE+EF,BE=AF,∴BE=DF+CF.【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的性质及判定,勾股定理,关键在构造和证明全等三角形.21、(1);(2)不能,理由见解析【分析】(1)设被手遮住部分的式子为A,代入求值即可;(2)不能,根据分式有意义的条件证明即可.【详解】(1)设被手遮住部分的式子为A,由题意得(2)不能等于-1.由题意可得:若解得:当时,原式的除式为0,无意义.故原式的计算结果不能等于.【点睛】本题考查了分式的混合运算,掌握分式混合运算的法则、分式有意义的条件是解题的关键.22、(1)50;(2)见解析;(3)32,57.6;(4)该校有448名学生寒假在家做家务的总时间不低于20小时.【解析】(1)本次共调查了10÷20%=50(人);(2)B类人数:50×24%=12(人),D类人数:50﹣10﹣12﹣16﹣4=8(人),根据此信息补全条形统计图即可;(3)=32%,即m=32,类别D所对应的扇形圆心角的度数360°×=57.6°;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名).【详解】(1)本次共调查了10÷20%=50(人),故答案为:50;(2)B类人数:50×24%=12(人),D类人数:50﹣10﹣12﹣16﹣4=8(人),(3)=32%,即m=32,类别D所对应的扇形圆心角的度数360°×=57.6°,故答案为:32,57.6;(4)估计该校寒假在家做家务的总时间不低于20小时的学生数.800×(1﹣20%﹣24%)=448(名),答:估计该校有448名学生寒假在家做家务的总时间不低于20小时.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)y=﹣2x+1(2)2或(3)S=t2﹣t(2<t≤1)【分析】(1)依据待定系数法即可求得;(2)根据直角三角形的性质解答即可;(3)有两种情况:当0<t<2时,PF=1﹣2t,当2<t≤1时,PF=2t﹣1,然后根据面积公式即可求得;【详解】(1)∵C(2,1),∴A(0,1),B(2,0),设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=﹣2x+1.(2)当以B、Q、E为顶点的三角形是直角三角形时,P、E、Q共线,此时t=2,当以B、Q、E为顶点的三角形是直角三角形时,EQ⊥BE时,此时t=;(3)如图2,过点Q作QF⊥y轴于F,∵PE∥OB,∴,∵AP=BQ=t,∴PE=t,AF=CQ=1﹣t,当0<t<2时,PF=1﹣2t,∴S=PE•PF=×t(1﹣2t)=t﹣t2,即S=﹣t2+t(0<t<2),当2<t≤1时,PF=2t﹣1,∴S=PE•PF=×t(2t﹣1)=t2﹣t(2<t≤1).【点睛】本题考查了待定系数法求解析式,平行线的性质,以及三角形的面积公式的应用,灵活运用相关知识,学会用分类讨论的思想思考问题是解题的关键.24、(1)见详解;(2)见详解;(3)点、点【分析】(1)根据A,B坐标的特点在第二象限找到A,B的位置,O为坐标原点,然后顺次连接即可;(2)根据关于轴对称的点的特点:横坐标互为相反数,纵坐标不变,找到相应的点,顺次连接即可;(3)根据关于轴对称的点的特点:横坐标互为相反数,纵坐标不变即可写出点、点的坐标.【详解】(1)如图(2)如图(3)根据关于轴对称的点的特点:横坐标互为相反数,纵坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论