2022年四川省巴中市南江县正直中学高二数学理联考试卷含解析_第1页
2022年四川省巴中市南江县正直中学高二数学理联考试卷含解析_第2页
2022年四川省巴中市南江县正直中学高二数学理联考试卷含解析_第3页
2022年四川省巴中市南江县正直中学高二数学理联考试卷含解析_第4页
2022年四川省巴中市南江县正直中学高二数学理联考试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年四川省巴中市南江县正直中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若圆,,则C1和C2的位置关系是(

)A.外离

B.相交

C.内切

D.外切参考答案:D略2.已知向量,则以a,b为邻边的平行四边形的面积为(

)A.

B.

C.4

D.8

参考答案:B3.已知直线的方程为,直线的方程为,则的充要条件是A.或 B.C. D.或参考答案:A4.设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定.【解答】解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.5.下列结论不正确的是()A.若ab>bc,则a>c B.若a3>b3,则a>bC.若a>b,c<0,则ac<bc D.若<,则a>b参考答案:A【考点】不等式比较大小.【分析】A.C.D.利用不等式的基本性质即可判断出正误.B.利用数f(x)=x3在R上单调递增即可判断出正误.【解答】解:A.ab>bc,b<0,则a<c,因此不成立.B.由函数f(x)=x3在R上单调递增,则a3>b3?a>b,正确.C.a>b,c<0,则ac<bc,正确.D.∵<,则a<b,正确.故选:A.6.如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD?FA;③AE?CE=BE?DE;④AF?BD=AB?BF.所有正确结论的序号是()A.①② B.③④ C.①②③ D.①②④参考答案:D【考点】与圆有关的比例线段;命题的真假判断与应用.【分析】本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.【解答】解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD?FA.即结论②成立.由,得AF?BD=AB?BF.即结论④成立.正确结论有①②④.故答案为D7.已知两条直线,和平面,且,则与的位置关系是(

)

A.平面

B.平面 C.平面

D.平面,或平面参考答案:D8.设命题甲:的解集是实数集R;命题乙:,则命题甲是命题乙成立的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件参考答案:B由题意得,命题甲的解集是实数集,则,所以命题甲是命题乙成立的必要不充分条件,故选C.考点:必要不充分条件的判定.9.已知双曲线的两条渐近线与抛物线的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B. C.2 D.3参考答案:C10.直三棱柱中,若,,则异面直线与所成的角等于(

)A.30°

B.45°

C.60°

D.90°参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知样本数据为40,42,40,a,43,44,且这个样本的平均数为43,则该样本的标准差为_________.参考答案:【分析】由平均数的公式,求得,再利用方差的计算公式,求得,即可求解.【详解】由平均数的公式,可得,解得,所以方差为,所以样本的标准差为.【点睛】本题主要考查了样本的平均数与方差、标准差的计算,着重考查了运算与求解能力,属于基础题.12.曲线y=2x3-3x2共有________个极值.参考答案:2略13..参考答案:8π+ln2﹣【考点】定积分.【分析】根据定积分几何意义和定积分的计算法则计算即可.【解答】解:根据定积分的几何意义表示以原点为圆心,以及半径为4的圆的面积的二分之一,故=×16π=8π,因为x3奇函数,故x3dx=0,因为(﹣x)dx=(lnx﹣x2)|=(ln2﹣2)﹣(ln1﹣)=ln2﹣,故原式=8π+0+ln2﹣=8π+ln2﹣,故答案为:8π+ln2﹣【点评】本题考查了定积分几何意义和定积分的计算,属于中档题.14.椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则|PF2|=

.参考答案:2【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】根据椭圆方程,得到椭圆的长轴为2a=6,再由椭圆的定义得椭圆上点P满足:|PF1|+|PF2|=2a=6,结合题意|PF1|=4,则不难得到PF2的长度.【解答】解:∵椭圆方程为∴a2=9,b2=2,得椭圆的长轴长2a=6∵点P在椭圆上,∴|PF1|+|PF2|=2a=6,得|PF2|=6﹣|PF1|=6﹣4=2故答案为:2【点评】本题给出椭圆上一点到左焦点的距离,求它到右焦点的距离,着重考查了椭圆的定义与标准方程等知识,属于基础题.15.已知椭圆的两焦点为,点是椭圆内部的一点,则的取值范围为.参考答案:16.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得的最大利润为.参考答案:4900元【考点】5C:根据实际问题选择函数类型;5A:函数最值的应用.【分析】我们设派x辆甲卡车,y辆乙卡车,利润为z,构造出x,y满足的约束条件,及目标函数,画出满足条件的平面区域,利用角点法即可得到答案.【解答】解:设派用甲型卡车x辆,乙型卡车y辆,获得的利润为z元,z=450x+350y由题意,x、y满足关系式作出相应的平面区域如图阴影部分所示z=450x+350y=50(9x+7y)由得交点(7,5)∴当x=7,y=5时,450x+350y有最大值4900即该公司派用甲型卡车7辆,乙型卡车5辆,获得的利润最大,最大为4900元故答案为:4900元17.设,则的值为

参考答案:1略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(Ⅰ)求该椭圆的标准方程;(Ⅱ)过原点的直线交椭圆于点,求面积的最大值.参考答案:(Ⅰ)由已知得椭圆的半长轴,半焦距,则半短轴.

又椭圆的焦点在轴上,∴椭圆的标准方程为.………4分(Ⅱ)当直线垂直于轴时,,因此的面积.当直线不垂直于轴时,该直线方程为,代入,解得B(,),C(-,-),则,又点A到直线的距离,∴△ABC的面积.于是.由,得,其中当时,等号成立.∴的最大值是.

………10分19.(本小题10分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC-ccosA.(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.参考答案:(Ⅰ)由c=asinC-ccosA及正弦定理得sinAsinC-cosAsinC-sinC=0.由于sinC≠0,所以sin=.又0<A<π,故A=.(Ⅱ)△ABC的面积S=bcsinA=,故bc=4.而a2=b2+c2-2bccosA,故b2+c2=8.解得b=c=2.20.

参考答案:解析:(1),.

设圆的方程是

令,得;令,得

,即:的面积为定值.

(2)垂直平分线段.

,直线的方程是.

,解得:

当时,圆心的坐标为,,

此时到直线的距离,圆与直线相交于两点.当时,圆心的坐标为,,此时到直线的距离圆与直线不相交,不符合题意舍去.圆的方程为.21.已知函数(1)当a=0时,求f(x)的极值;(2)若f(x)在区间上是增函数,求实数a的取值范围.参考答案:【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【专题】函数的性质及应用.【分析】(1)因为当函数的导数为0时,函数有极值,所以当a=0时,必须先在定义域中求函数f(x)的导数,让导数等于0,求x的值,得到极值点,在列表判断极值点两侧导数的正负,根据所列表,判断何时有极值.(2)因为当函数为增函数时,导数大于0,若f(x)在区间上是增函数,则f(x)在区间上恒大于0,所以只需用(1)中所求导数,令导数大于0,再判断所得不等式当a为何值时,在区间上恒大于0即可.【解答】解:(1)函数的定义域为(0,+∞)∵当a=0时,f(x)=2x﹣lnx,则∴x,f'(x),f(x)的变化情况如下表x(0,)(,+∞)f'(x)﹣0+f(x)

极小值

∴当时,f(x)的极小值为1+ln2,函数无极大值.(2)由已知,得若a=0,由f'(x)>0得,显然不合题意若a≠0∵函数f(x)区间是增函数∴f'(x)≥0对恒成立,即不等式ax2+2x﹣1≥0对恒成立.即恒成立

故而当,函数,∴实数a的取值范围为a≥3.【点评】本题考查了利用导数求函数极值以及函数单调性,属于常规题,必须掌握.22.为考察高中生的性别与是否喜欢数学课程之间的关系,某校在高中生中随机抽取100名学生进行了问卷调查,得到如下列联表:

喜欢数学不喜欢数学合计男生40

女生

30

合计50

100

(1)请将上面的列联表补充完整;(2)能否在犯错误的概率不超过0.001的前提下认为“喜欢数学”与性别有关?说明你的理由;(3)若在接受调查的所有男生中按照“是否喜欢数学”进行分层抽样,现随机抽取6人,再从6人中抽取3人,求至少有1人“不喜欢数学”的概率.下面的临界值表供参考:0.050.0100.0050.001k3.8416.6357.87910828

(参考公式:,其中).参考答案:(1)详见解析;(2)详见解析;(3).【分析】(1)结合题中所给的条件完成列联表即可;(2)结合(1)中的列联表结合题意计算的观测值,即可确定喜欢数学是否与性别有关;(3)随机抽取6人中,根据列联表中数据按照分层抽样原则,分别求出喜欢数学和不喜欢数学的人数,用间接法求出3人都喜欢数学的概率,进而得出结论.【详解】(1)列联表补充如下:

喜欢数学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论