版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
丽水市重点中学2023年八年级数学第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和672.下列物品不是利用三角形稳定性的是()A.自行车的三角形车架 B.三角形房架C.照相机的三脚架 D.放缩尺3.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A. B.C. D.4.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A. B. C. D.5.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°6.“2的平方根”可用数学式子表示为()A. B. C. D.7.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=-cx-a的图象可能是()A. B. C. D.8.下列各点在函数图象上的是()A. B. C. D.9.分式有意义,则的取值范围是()A. B. C. D.10.对于实数a、b定义一种运算“※”,规定a※b=,如1※3=,则方程※(﹣2)=的解是()A. B. C. D.二、填空题(每小题3分,共24分)11.△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是____.12.“同位角相等”的逆命题是__________________________.13.若关于x,y的二元一次方程组的解也是二元一次方程的解,则k的值为_______________.14.已知直角三角形的两边长分别为5和12,则第三边长的平方是__________.15.已知,则的值为__________.16.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=_____.17.已知a-b=3,ab=28,则3ab2-3a2b的值为_________.18.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=_____.三、解答题(共66分)19.(10分)解下列方程.(1)(2)20.(6分)先化简,再求值,其中21.(6分)如图,在中,,点是边上一点,垂直平分,交于点,交于点,连结,求证:.22.(8分)绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树800棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前5天完成任务,则原计划每天种树多少棵?23.(8分)解方程组:24.(8分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.25.(10分)如图,在△ABC中,AC=6,BC=8,DE是△ABD的边AB上的高,且DE=4,AD=,BD=.求证:△ABC是直角三角形.26.(10分)已知a,b,c为△ABC的三边长,且.(1)求a,b值;(2)若△ABC是等腰三角形,求△ABC的周长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2、D【解析】试题分析:只要三角形的三边确定,则三角形的大小唯一确定,即三角形的稳定性.解:A,B,C都是利用了三角形稳定性,放缩尺,是利用了四边形不稳定性.故选D.考点:三角形的稳定性.3、A【分析】根据轴对称图形的概念解答即可.【详解】A、不是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选A.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,熟记轴对称图形的定义是解题关键.4、A【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得答案.【详解】∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限;故答案为:A.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.5、D【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【详解】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.6、A【分析】根据a(a≥0)的平方根是±求出即可.【详解】解:2的平方根是故选:A.【点睛】本题考查平方根的性质,正确理解平方根表示方法是解本题的关键.7、B【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限即可.【详解】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∴-c<0,-a>0,∴函数y=-cx-a的图象经过第一、二、四象限.故选B.【点睛】本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.8、A【分析】依据函数图像上点的坐标满足解析式可得答案.【详解】解:把代入解析式得:符合题意,而,,均不满足解析式,所以不符合题意.故选A.【点睛】本题考查的是图像上点的坐标满足解析式,反之,坐标满足解析式的点在函数图像上,掌握此知识是解题的关键.9、B【分析】根据分式有意义的条件,即可得到答案.【详解】解:∵分式有意义,∴,∴;故选:B.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分母不等于0时,分式有意义.10、C【分析】根据定义新运算公式列出分式方程,然后解分式方程即可.【详解】解:∵※(﹣2)=∴解得:x=6经检验:x=6是原方程的解故选C.【点睛】此题考查的是定义新运算和解分式方程,掌握定义新运算公式和解分式方程的一般步骤是解决此题的关键.二、填空题(每小题3分,共24分)11、1<m<1【详解】解:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵AD=DE,∠ADB=∠EDC,BD=CD,∴△ADB≌△EDC,∴EC=AB=5,在△AEC中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<1,故答案为1<m<1.考点:全等三角形的判定与性质;三角形三边关系.12、如果两个角相等,那么这两个角是同位角.【解析】因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.13、【分析】将k看做已知数求出x与y,代入2x十3y=
6中计算即可得到k的値.【详解】解:
①十②得:
2x=14k,即x=7k,
将x=
7k代入①得:7k十y=5k,即y=
-2k,
將x=7k,
y=
-2k代入2x十3y=6得:
14k-6k=6,
解得:
k=
故答案为:
【点睛】此题考查了二元一次方程组的解以及二元一-次方程的解,方程的解即为能使方程左右两边成立的未知数的值.14、169或1【分析】求第三边的长必须分类讨论,分12是斜边或直角边两种情况,然后利用勾股定理求解.【详解】分两种情况:
①当5和12为直角边长时,
由勾股定理得:第三边长的平方,即斜边长的平方;
②12为斜边长时,
由勾股定理得:第三边长的平方;
综上所述:第三边长的平方是169或1;
故答案为:169或1.【点睛】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.15、﹣1【分析】等式左边根据多项式的乘法法则计算,合并后对比两边系数即得答案.【详解】解:∵,,∴,∴m=﹣1.故答案为:﹣1.【点睛】本题考查了多项式乘多项式的运算法则,属于基础题型,熟练掌握多项式乘法的运算法则是解题关键.16、75°.【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点睛】本题考查了三角板的性质,三角形内角和定理等知识,熟练掌握相关的知识是解题的关键.17、-252【分析】先把3ab2-3a2b进行化简,即提取公因式-3ab,把已知的值代入即可得到结果.【详解】解:因为a-b=3,ab=28,所以3ab2-3a2b=3ab(b-a)=-3ab(a-b)=-3×28×3=-252【点睛】本题主要考查了多项式的化简求值,能正确提取公因式是做题的关键,要把原式化简成与条件相关的式子才能代入求值.18、-1【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.【详解】∵点A(1,a)与点B(b,4)关于x轴对称,∴b=1,a=−4,则a+b=−4+1=−1,故答案为:−1.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.三、解答题(共66分)19、(1)是该方程的解;(2)是该方程的解.【分析】(1)方程两边同时乘以(),化为整式方程后求解,然后进行检验即可得;(2)方程两边同时乘以,化为整式方程后求解,最后进行检验即可得.【详解】(1)方程两边同时乘以(),得:,解得:,经检验:是原分式方程的解;(2)方程两边同时乘以,得:,解得:,经检验:是原分式方程的解.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤以及注意事项是解题的关键.20、,2【分析】先将括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a、b的值代入计算即可求出值.【详解】解:原式当原式=2【点睛】此题考查了分式的化简求值和二次根式的加减法,熟练掌握运算法则是解本题的关键.21、见详解.【分析】由等腰三角形的性质得出,然后根据垂直平分线的性质和等腰三角形的性质得出,通过等量代换得到,最后利用同位角相等,两直线平行即可证明结论.【详解】∵,.∵垂直平分,∴,,,.【点睛】本题主要考查等腰三角形的性质,垂直平分线的性质和平行线的判定,掌握等腰三角形的性质,垂直平分线的性质和平行线的判定是解题的关键.22、原计划每天种树80棵.【分析】设原计划每天种树x棵.
根据工作量=工作效率×工作时间列出方程,解答即可.【详解】(1)设:原计划每天种树x棵解得:x=80经检验,x=80是原分式方程的解,且符合题意答:原计划每天种树80棵.【点睛】此题主要考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.工程类问题主要用到公式:工作总量=工作效率×工作时间.23、【解析】把①×3+②,消去y,求出x的值,再把求得的x的值代入①求出y的值即可.【详解】由①×3,得.③把③+②,得.解得.把代入①,得..∴原方程组的解是【点睛】本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.灵活选择合适的方法是解答本题的关键.24、证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC全等,从而得出答案.试题解析:∵∠ACD=∠BCE∴∠ACB=∠DCE又∵AC=DCBC=EC∴△ABC≌△DEC∴∠A=∠D考点:三角形全等的证明25、详见解析【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股逆定理的逆定理可证△ABC是直角三角形.【详解】证明:DE是AB边上的高,∴∠AED=∠BED=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 昆明城市学院《模拟电路设计含实验双语》2023-2024学年第一学期期末试卷
- 江苏联合职业技术学院《小学数学教学设计》2023-2024学年第一学期期末试卷
- 吉林工程技术师范学院《海洋油气工程综合课程设计》2023-2024学年第一学期期末试卷
- 湖南农业大学东方科技学院《人工智能原理与技术》2023-2024学年第一学期期末试卷
- 【物理】《滑轮》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 重庆文理学院《西方文论专题》2023-2024学年第一学期期末试卷
- 郑州财税金融职业学院《数字出版物创作实训》2023-2024学年第一学期期末试卷
- 浙江经贸职业技术学院《MySQL数据库应用》2023-2024学年第一学期期末试卷
- 董事会议事规则
- 浙江安防职业技术学院《婴幼儿语言发展与教育》2023-2024学年第一学期期末试卷
- 《国有控股上市公司高管薪酬的管控研究》
- 餐饮业环境保护管理方案
- 食品安全分享
- 矿山机械设备安全管理制度
- 计算机等级考试二级WPS Office高级应用与设计试题及答案指导(2025年)
- 造价框架协议合同范例
- 糖尿病肢端坏疽
- 《创伤失血性休克中国急诊专家共识(2023)》解读课件
- 小学六年级数学100道题解分数方程
- YY 0838-2021 微波热凝设备
- 病原细菌的分离培养
评论
0/150
提交评论