版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1第7章《随机变量及其分布》人教A版2019选择性必修第三册7.1.2全概率公式1.结合古典概型,了解利用概率的加法公式和乘法公式推导出全概率公式的过程;2.理解全概率公式的形式并会利用全概率公式计算概率;3.了解贝叶斯公式以及公式的简单应用.学习目标1.条件概率3.概率的乘法公式环节一:创设情境,引入课题
在上节计算按对银行储蓄卡密码的概率时,我们首先把一个复杂事件表示为一些简单事件运算的结果,然后利用概率的加法公式和乘法公式求其概率.下面,再看一个求复杂事件概率的问题.上述过程采用的方法是:按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和乘法公式求得这个复杂事件的概率.我们称上面的公式为全概率公式(totalprobabilityformula).全概率公式是概率论中最基本的公式之一.环节二:观察分析,感知概念例4
某学校有A,B两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8.计算王同学第2天去A餐厅用餐的概率.分析:第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A餐厅”和“第1天去B餐厅”两个互斥事件的并,利用全概率公式求解.因此,王同学第2天去A餐厅用餐的概率为0.7.例5
有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,计算它是次品的概率;(2)如果取到的零件是次品,计算它是第i(i=1,2,3)台车床加工的概率.环节三:抽象概括,形成概念例5
有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,计算它是次品的概率;(2)如果取到的零件是次品,计算它是第i(i=1,2,3)台车床加工的概率.例5
有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,计算它是次品的概率;(2)如果取到的零件是次品,计算它是第i(i=1,2,3)台车床加工的概率.环节四:辨析理解,深化概念将例5中的问题(2)一般化,可以得到贝叶斯公式.例6
在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的.(1)分别求接收的信号为0和1的概率;*(2)已知接收的信号为0,求发送的信号是1的概率.环节五:课堂练习,巩固运用1.全概率公式:2.贝叶斯公式:环节六:归纳总结,反思提升
应用全概率公式的关键是寻找与该事件相关的完备事件组.当事件的发生与相继两个试验有关,第一次试验的各种结果直接对第二次试验产生影响,因此从第一次试验入手,找出完备事件组.当事件的发生是由诸多两两互不相容的原因A1,A2,…,An,…引起的,且只能在原因A1,A2,…,An,…下发生,那么这些原因就是一个完备事件组.在选择完备事件组的时候,一定要把产生结果的原因全找出来,不能遗漏,并且保证A1,A2,…,An,…为两两互不相容事件.
全概率公式为复杂事件的概率计算提供了一条有效途径,是概率论中一个有效的分析工具,其重要意义在于:对于一个复杂的事件B,若无法直接求出它的概率P(B),则可以“化整为零”,通过选择样本空间的划分将复杂事件B分解为若干个简单事件来进行处理,从而使分析问题的思路变得清晰条理,计算化繁为简,化难为易.环节七:目标检测,作业布置完成教材:第53页习题7.1第5,7,8题.练习
第52页1.现有12道四选一的单选题,学生张君对其中9道题有思路,3道题完全没有思路.有思路的题做对的概率为0.9,没有思路的题只好任意猜一个答案,猜对答案的概率为0.25.张君从这12道题中随机选择1题,求他做对该题的概率.即他做对该题的概率为0.7375.2.两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取1件.(1)求这件产品是合格品的概率;*(2)已知取到的是合格品,求它取自第一批产品的概率.习题7.1(第52页)1.为了研究不同性别学生患色盲的比例,调查了某学校2000名学生,数据如下表所示.单位:人男女合计色盲60262非色盲11407981938合计12008002000从这2000人中随机选择1人.(1)已知选到的是男生,求他患色盲的概率;(2)已知选到的学生患色盲,求他是男生的概率.1.为了研究不同性别学生患色盲的比例,调查了某学校2000名学生,数据如下表所示.单位:人男女合计色盲60262非色盲11407981938合计12008002000从这2000人中随机选择1人.(1)已知选到的是男生,求他患色盲的概率;(2)已知选到的学生患色盲,求他是男生的概率.2.从人群中随机选出1人,设B=“选出的人患有心脏病”,C=“选出的人是年龄大于50岁的心脏病患者”,请你判断P(B)和P(C)的大小,并说明理由.3.甲、乙两人向同一目标各射击1次,已知甲命中目标的概率为0.6,乙命中目标的概率为0.5.已知目标至少被命中1次,求甲命中目标的概率.
解:设事件A为“目标至少被命中1次”,事件B为“甲命中目标”,4.甲和乙两个箱子中各装有10个球,其中甲箱中有5个红球、5个白球,乙箱中有8个红球、2个白球.掷一枚质地均匀的骰子,如果点数为1或2,从甲箱子随机摸出1个球;如果点数为3,4,5,6,从乙箱子中随机摸出1个球.求摸到红球的概率.5.在A,B,C三个地区暴发了流感,这三个地区分别有6%,5%,4%的人患了流感.假设这三个地区的人口数的比为5:7:8,现从这三个地区中任意选取一个人.(1)求这个人患流感的概率;*(2)如果此人患流感,求此人选自A地区的概率.(1)设事件A,B,C分别表示:任意选取一个人,分别来自A,B,C地区.事件D表示:这个人患流感.7.一批产品共有100件,其中5件为不合格品.收货方从中不放回地随机抽取产品进行检验,并按以下规则判断是否接受这批产品:如果抽检的第1件产品不合格,则拒绝整批产品;如果抽检的第1件产品合格,则再抽1件,如果抽检的第2件产品合格,则接受整批产品,否则拒绝整批产品.求这批产品被拒绝的概率.解:设事件A为“抽检的第1件产品合格”,事件B为“抽检的第2件产品合格”.8.在孟德尔豌豆试验中,子二代的基因型为DD,Dd,dd,其中D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论