2022年福建省三明市屏山初级中学高二数学理期末试卷含解析_第1页
2022年福建省三明市屏山初级中学高二数学理期末试卷含解析_第2页
2022年福建省三明市屏山初级中学高二数学理期末试卷含解析_第3页
2022年福建省三明市屏山初级中学高二数学理期末试卷含解析_第4页
2022年福建省三明市屏山初级中学高二数学理期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年福建省三明市屏山初级中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.长方体中,AB=15,BC=8,则与平面的距离为

()A.

B.

C.8

D.15参考答案:A2.下列命题中,是正确的全称命题的是(

)(A)对任意的,都有.(B)菱形的两条对角线相等.(C)存在实数使得.Ks5u(D)对数函数在定义域上是单调函数.参考答案:D3.已知是函数的极小值点,那么函数的极大值为A.15

B.16

C.17

D.18参考答案:D4.在复平面内,复数对应的点位于(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:C略5.某同学同时掷两颗骰子,得到点数分别为a、b,则椭圆=1的离心率e>的概率是(

)(A)

(B)

(C)

(D)参考答案:D略6.若函数在区间上存在一个零点,则的取值范围是(

)A.

B.或

C.

D.参考答案:B略7.函数的定义域为,对任意则的解集为(

)A.(-1,1) B.(-∞,1) C.(1,+∞) D.(-∞,+∞)参考答案:C分析】令,求得,得到函数为上的单调递增函数,又由,得出则不等式的解集,即为,即可求解.【详解】由题意,令,则,因为,所以,即函数为上的单调递增函数,又由,则,则不等式的解集,即为,解得,所以不等式的解集为.【点睛】本题主要考查了导数的应用,其中解答中通过构造新函数,利用导数求得新函数的单调性,合理求解是解答的关键,着重考查了构造思想,以及推理与运算能力,属于基础题.8.?x1∈(1,2),?x2∈(1,2)使得lnx1=x1+,则正实数m的取值范围是()A. B. C.[3﹣3ln2,+∞) D.(3﹣3ln2,+∞)参考答案:B【考点】2H:全称命题.【分析】由题意得到lnx1﹣x1=m﹣mx2,设h(x)=lnx﹣x在(1,2)上的值域为A,函数g(x)=mx3﹣mx在(1,2)上的值域为B,根据函数的单调性求m的取值范围.【解答】解:由题意,得lnx1﹣x1=,设h(x)=lnx﹣x在(1,2)上的值域为A,函数g(x)=mx3﹣mx在(1,2)上的值域为B,当x∈(1,2)时,h′(x)=﹣1=<0,函数h(x)在(1,2)上单调递减,故h(x)∈(ln2﹣2,﹣1),∴A=(ln2﹣2,﹣1);又g'(x)=mx2﹣m=m(x+1)(x﹣1),m>0时,g(x)在(1,2)上单调递增,此时g(x)的值域为B=(﹣,),由题意A?B,且m>0>﹣1,∴﹣≤ln2﹣2,解得m≥﹣(ln2﹣2)=3﹣ln2;∴正实数m的取值范围是[3﹣ln2,+∞).故选:B.【点评】本题考查了函数的单调性、最值问题,也考查了导数的应用问题,是中档题.9.算法的有穷性是指(

)A.算法必须包含输出

B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限

D.以上说法均不正确参考答案:C10.已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.8参考答案:A【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用抛物线的定义、焦点弦长公式即可得出.【解答】解:抛物线C:y2=x的焦点为F,∵A(x0,y0)是C上一点,AF=|x0|,∴=x0+,解得x0=1.故选:A.【点评】本题考查了抛物线的定义、焦点弦长公式,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.参考答案:【考点】双曲线的简单性质.【分析】设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,求出直线AP的方程,即可求出点F到直线AP的距离.【解答】解:设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,直线AP的方程为y=(x﹣4),即4x+3y﹣16=0,∴点F到直线AP的距离为=,故答案为:12.以点为端点的线段的中垂线的方程是

;参考答案:略13.如图,F1,F2分别是双曲线C:﹣=1(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交与点M,若|MF2|=|F1F2|,则C的离心率是.参考答案:【考点】双曲线的简单性质.【分析】依题意可求得直线F1B的方程,与双曲线C的方程联立,利用韦达定理可求得PQ的中点坐标,从而可得线段PQ的垂直平分线的方程,继而可求得M点的坐标,从而可求得C的离心率.【解答】解:依题意F1(﹣c,0),B(0,b),∴直线F1B的方程为:y﹣b=x,与双曲线C的渐近线方程联立得:b2x2﹣a2=0,整理得:b2x2﹣2a2cx﹣a2c2=0,设P(x1,y1),Q(x2,y2),则x1,x2为上面方程的两根,由韦达定理得:x1+x2=,y1+y2=(x1+x2)+2b=,∴PQ的中点N(,),又直线MN的斜率k=﹣(与直线F1B垂直),∴直线MN的方程为:y﹣=﹣(x﹣),令y=0得M点的横坐标x=c+=.∵|MF2|=|F1F2|,∴﹣c=2c.∴c2=3b2=3(c2﹣a2),∴c2=a2,∴e==.故答案为:.14.以双曲线的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是

.参考答案:略15.若x,y满足约束条件,则z=x+y的最大值为.参考答案:【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点C时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即C(1,),代入目标函数z=x+y得z=1+=.即目标函数z=x+y的最大值为.故答案为:.16.圆心在轴上,且与直线相切于点(1,1)的圆的方程为____________________参考答案:17.设随机变量服从正态分布,若,则实数a=_______.参考答案:3【分析】由正态分布的对称性可知与关于对称,从而列方程求解即可.【详解】随机变量,其正态分布曲线关于对称,由于,所以与关于对称.,解得:.【点睛】本题考查正态分布曲线的对称性及概率的简单计算.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,(1)若,求的值;(2)若,求中含项的系数.参考答案:(1)因为,所以,又,所以

(1)

(2)(1)-(2)得:所以:

(2)因为,所以中含项的系数为19.若,其中;(1)求实数的值;(2)求的值。参考答案:(1)解: 2分

∴ 4分(2)解:令,得: 7分令,得: 10分

则A0+A1=0,A0-A1=1

所求为 12分略20.已知展开式中第6项为常数.(1)求n的值;(2)求展开式中系数最大项.参考答案:【考点】DB:二项式系数的性质.【分析】(1)根据通项公式即可求出n的值,(2)设展开式系数最大项为第r+1项,则得到关于r烦人不等式组,解得r,问题得以解决【解答】解:(1)展开式的通项公式为Tr+1=2﹣n+2r?Cnrx,∵展开式中第6项为常数,∴r=5,即为=0,解得n=15,(2)设展开式系数最大项为第r+1项,则有2﹣15+2r?C15r≥2﹣13+2r?C15r+1,2﹣15+2r?C15r≤2﹣17+2r?C15r﹣1,解得r=12故第13项的系数最大为2﹣15+24?C1512x=29C153x【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.21.已知数列满足(Ⅰ)求数列的通项公式;ks5u

(Ⅱ)若数列满足,证明:是等差数列;(Ⅲ)证明:参考答案:解:(1),故数列是首项为2,公比为2的等比数列。

…………2分,

…………4分(2),

①…………5分②②—①得,即③

…………6分④…………④—③得,即…………8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论