版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省贵阳市洛湾中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知离心率的双曲线()右焦点为F,O为坐标原点,以OF为直径的圆与双曲线C的一条渐近线交于O,A两点,若的面积为,则a的值为(
)(A)
(B)3
(C)4
(D)5参考答案:C2.过椭圆的一个焦点作垂直于长轴的椭圆的弦,则此弦长为(
)A、
B、
C、
D、参考答案:B3.“a是2的倍数”是“a是4的倍数”的(
)条件A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要参考答案:B略4.设函数的最小正周期为π,且,则A. B.C. D.参考答案:D【分析】利用辅助角公式把化成,利用周期,求出的值,再根据奇函数性质,得到的值。【详解】因为,又周期,所以,因为,且为奇函数,所以,所以,又,解得:。【点睛】本题考查辅助角公式的应用及正弦型函数的周期、奇偶性,再根据三角函数值求解时,要注意角的取值范围。5.曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(
) A.B.C.D.参考答案:D略6.过抛物线y=x2上的点的切线的倾斜角()A.30° B.45° C.60° D.135°参考答案:B【考点】利用导数研究曲线上某点切线方程.【专题】方程思想;转化法;导数的概念及应用.【分析】求得函数的导数,求得切线的斜率,由直线的斜率公式,可得倾斜角.【解答】解:y=x2的导数为y′=2x,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tanα=1,解得α=45°.故选:B.【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.7.
参考答案:A略8.设x,y满足约束条件则的最大值与最小值的比值为()A.-1 B. C.-2 D.参考答案:C【分析】画出可行域,求得目标函数最大最小值则比值可求【详解】由题不等式所表示的平面区域如图阴影所示:化直线l;为y=-x+z,当直线l平移到过A点时,z最大,联立得A(2,5),此时z=7;当直线l平移到过B点时,z最小,联立得B(,此时z=-,故最大值与最小值的比值为-2故选:C【点睛】本题考查线性规划,准确作图与计算是关键,是基础题.9.四棱柱ABCD﹣A1B1C1D1的底面是平行四边形,M是AC与BD的交点.若=,=,=,则可以表示为()A. B. C. D.参考答案:C【考点】空间向量的加减法.【分析】利用向量三角形法则、平行四边形法则即可得出.【解答】解:∵四棱柱ABCD﹣A1B1C1D1的底面是平行四边形,M是AC与BD的交点.∴=+,==﹣,∴=﹣﹣,故选:C.【点评】本题考查了向量三角形法则、平行四边形法则,考查了推理能力与计算能力,属于中档题.10.已知点P在曲线y=上,θ为曲线在点P处的切线的倾斜角,则θ的取值范围是()A.[0,) B. C. D.参考答案:C【考点】6H:利用导数研究曲线上某点切线方程.【分析】由导函数的几何意义可知函数图象在切点处的切线的斜率值即为其点的导函数值,结合函数的值域的求法利用基本不等式求出k的范围,再根据k=tanθ,结合正切函数的图象求出角θ的范围.【解答】解:根据题意得f′(x)=﹣,∵k=﹣≤﹣=﹣1,且k<0,则曲线y=f(x)上切点处的切线的斜率k≥﹣1,又∵k=tanθ,结合正切函数的图象:由图可得θ∈[,π),故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.如图为函数轴和直线分别交于点P、Q,点N(0,1),若△PQN的面积为b时的点M恰好有两个,则b的取值范围为
▲
.参考答案:12.如右图为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成..参考答案:413.若关于的不等式的解集,则的值为
参考答案:-314.已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为__________.参考答案:15.=.参考答案:﹣2【考点】67:定积分.【分析】根据定积分的几何意义,求得dx=,根据定积分的计算,即可求得答案.【解答】解:=dx﹣xdx,dx表示以(1,0)为圆心,以1为半径的圆的上半部分,∴dx=,xdx=x2=2,∴=﹣2,故答案为:﹣2.【点评】本题考查定积分的运算,定积分的几何意义,考查计算能力,属于中档题.16.已知随机变量X服从正态分布且则参考答案:0.117.抛物线的焦点坐标为_______.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知以点为圆心的圆与直线相切,过点的动直线与圆A相交于M、N两点(1)求圆A的方程.
(2)当时,求直线方程.参考答案:由题意知到直线的距离为圆半径
②由垂径定理可知且,在中由勾股定理易知
设动直线方程为:,显然合题意。
由到距离为1知
为所求方程. 略19.如图长方体ABCD﹣A1B1C1D1中,AB=AA1=1,BC=,M是AD的中点,N是B1C1中点.(1)求证:NA1∥CM;(2)求证:平面A1MCN⊥平面A1BD1;(3)求直线A1B和平面A1MCN所成角.参考答案:【考点】直线与平面所成的角;空间中直线与直线之间的位置关系;直线与平面垂直的判定.【专题】综合题;转化思想;综合法;空间位置关系与距离;空间角.【分析】(1)以D为原点,建立空间直角坐标系D﹣xyz,求出=(,﹣1,0),=(,﹣1,0),可得=,即可证明NA1∥CM;(2)?=0+1﹣1=0,?=0,即可证明D1B⊥平面A1MCN,从而平面A1MCN⊥平面A1BD1.(3)由(2)得B到平面A1MCN的距离为d==1,A1B=,即可求直线A1B和平面A1MCN所成角.【解答】证明:(1)以D为原点,建立空间直角坐标系D﹣xyz,则B(,1,0),A(,0,1),D1(0,0,1),C(0,1,0),M(,0,0),N(,1,1),∴=(,﹣1,0),=(,﹣1,0),∴=,∴NA1∥CM;(2)∵=(,1,﹣1),=(0,1,1),=(,﹣1,0),∴?=0+1﹣1=0,?=0,∴D1B⊥MN,D1B⊥CM,又MN∩CM=M,∴D1B⊥平面A1MCN,又D1B?平面A1BD1,∴平面A1MCN⊥平面A1BD1.(3)由(2)得B到平面A1MCN的距离为d==1,A1B=,∴直线A1B和平面A1MCN所成角的正弦值为=,∴直线A1B和平面A1MCN所成角为.【点评】本题考查平面与平面垂直的判定,考查空间向量的运用,正确求出向量的坐标是关键.20.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.5-89.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)参考答案:(1)频数为15、频率0.25;(2)75%.试题分析:(1)利用频率分布直方图中,纵坐标与组距的乘积是相应的频率,频数=频率×组距,可得结论;(2)纵坐标与组距的乘积是相应的频率,再求和,即可得到结论.试题解析:(1)由频率的意义可知,成绩在79.5~89.5这一组的频率为:0.025×10=0.25,频数:60×0.25=15;(2)利用纵坐标与组距的乘积是相应的频率可得及格率为0.015×10+0.025×10+0.03×10+0.005×10=0.75平均分为:70.5考点:用样本的频率分布估计总体分布;频率分布直方图.21.已知集合,.(1)当时,求;(2)若,求实数m的取值范围.参考答案:(1);(2)试题分析:(1)时,可以求出集合,然后进行并集及补集的运算即可;
(2)根据可得出,解该不等式组即可得出实数的取值范围.试题解析:(1)当时,集合,因为集合,所以,从而.(2)因为集合,且,所以,解之得,即实数的取值范围是.22.(本题满分14分)已知函数⑴设,求函数的极值;
⑵在⑴的条件下,若函数
(其中为的导数)在区间(1,3)上不是单调函数,求实数m的取值范围.参考答案:解:(1)
……(2分)
……(3分)解,得
……(4分)-0+↙极小值↗
……(6分)由表可知,,无极大值
…
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度房地产开发精美合同协议范本(品质保障版)3篇
- 2024版幼儿娱乐场所承包合同条款汇编版
- 二零二五版租赁住房合同纠纷调解规范3篇
- 2024版汽车租赁委托付款协议书
- 2025年度版权监测合同标的:盗版监测与维权3篇
- 二零二五版劳动合同主体变更与员工培训补贴协议3篇
- 2024年科技成果转化与合作合同
- 二零二五年度跨境电商金融合同履行与跨境支付服务3篇
- 二零二五年度生态环保库房租赁合同3篇
- 二零二五年度房地产项目招投标及合同签订协议3篇
- 餐饮行业智慧餐厅管理系统方案
- 2025年度生物医药技术研发与许可协议3篇
- 电厂检修安全培训课件
- 殡葬改革课件
- 2024企业答谢晚宴会务合同3篇
- 双方个人协议书模板
- 车站安全管理研究报告
- 玛米亚RB67中文说明书
- 五年级数学(小数四则混合运算)计算题专项练习及答案
- 2024年钢铁贸易行业前景分析:钢铁贸易行业发展趋势推动行业可持续发展
- 节前物业安全培训
评论
0/150
提交评论