版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
绵阳中学2024届高一数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.角的终边过点,则等于A. B.C. D.2.函数=的部分图像如图所示,则的单调递减区间为A. B.C. D.3.下列函数中,在区间上为减函数的是()A. B.C. D.4.在如图所示中,二次函数与指数函数的图象只可为A. B.C. D.5.函数的图像大致为A. B.C. D.6.要得到的图象,需要将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位7.现对有如下观测数据345671615131417记本次测试中,两组数据的平均成绩分别为,两班学生成绩的方差分别为,,则()A., B.,C., D.,8.已知函数fx=3xA.(0,1) B.(1,2)C.(2,3) D.(3,4)9.设是周期为的奇函数,当时,,则A. B.C. D.10.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.11.下列函数中,既是偶函数又在区间0,+∞A.y=-x2C.y=x312.集合,集合或,则集合()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.的值为________14.函数最小正周期是________________15.已知函数的图像恒过定点,若点也在函数的图像上,则__________16.函数的图象一定过定点P,则P点的坐标是______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:年份2015201620172018投资成本35917…年利润1234…给出以下3个函数模型:①;②(,且);③(,且).(1)选择一个恰当的函数模型来描述x,y之间的关系,并求出其解析式;(2)试判断该企业年利润不低于6百万元时,该企业是否要考虑转型.18.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并全部销售完当年销售量不超过40万部时,销售1万部手机的收入万元;当年销售量超过40万部时,销售1万部手机的收入万元(1)写出年利润万元关于年销售量万部的函数解析式;(2)年销售量为多少万部时,利润最大,并求出最大利润.19.已知正方体,(1)证明:平面;(2)求异面直线与所成的角20.已知能表示成一个奇函数和一个偶函数的和.(1)请分别求出与的解析式;(2)记,请判断函数的奇偶性和单调性,并分别说明理由.(3)若存在,使得不等式能成立,请求出实数的取值范围.21.溶液酸碱度是通过pH计量的.pH的计算公式为,其中表示溶液中氢离子的浓度,单位是摩尔/升.(1)根据对数函数性质及上述的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知胃酸中氢离子的浓度为摩尔/升,计算胃酸的.(精确到)(参考数据:)22.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.2、D【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质3、D【解析】根据基本初等函数的单调性及复合函数单调性求解.【详解】当时,在上单调递减,所以在区间上为增函数;由指数函数单调性知在区间上单调递增;由在区间上为增函数,为增函数,可知在区间上为增函数;知在区间上为减函数.故选:D4、C【解析】指数函数可知,同号且不相等,再根据二次函数常数项为零经过原点即可得出结论【详解】根据指数函数可知,同号且不相等,则二次函数的对称轴在轴左侧,又过坐标原点,故选:C【点睛】本题主要考查二次函数与指数函数的图象与性质,属于基础题5、A【解析】详解】由得,故函数的定义域为又,所以函数为奇函数,排除B又当时,;当时,.排除C,D.选A6、D【解析】由“左加右减上加下减”的原则可确定函数到的路线,进行平移变换,推出结果【详解】解:将函数向右平移个单位,即可得到的图象,即的图象;故选:【点睛】本题主要考查三角函数的平移.三角函数的平移原则为“左加右减上加下减”.注意的系数,属于基础题7、C【解析】利用平均数以及方差的计算公式即可求解.【详解】,,,,故,故选:C【点睛】本题考查了平均数与方差,需熟记公式,属于基础题.8、C【解析】根据导数求出函数在区间上单调性,然后判断零点区间.【详解】解:根据题意可知3x和-log2∴f(x)在(0,+∞而f(1)=3-0=3>0f(2)=f(3)=1-∴有函数的零点定理可知,fx零点的区间为(2故选:C9、A【解析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【点睛】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.10、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B11、A【解析】根据基本函数的性质和偶函数的定义分析判断即可【详解】对于A,因为f(x)=-(-x)2=-x2=f(x),所以y=-x2是偶函数,对于B,y=2x是非奇非偶函数,所以对于C,因为f(-x)=(-x)3=-x3对于D,y=lnx=lnx,x>0故选:A12、C【解析】先求得,结合集合并集的运算,即可求解.【详解】由题意,集合或,可得,又由,所以.故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据两角和的正弦公式即可求出【详解】原式故答案为:14、【解析】根据三角函数周期计算公式得出结果.【详解】函数的最小正周期是故答案为:15、1【解析】首先确定点A的坐标,然后求解函数的解析式,最后求解的值即可.【详解】令可得,此时,据此可知点A的坐标为,点在函数的图像上,故,解得:,函数的解析式为,则.【点睛】本题主要考查函数恒过定点问题,指数运算法则,对数运算法则等知识,意在考学生的转化能力和计算求解能力.16、(1,4)【解析】已知过定点,由向右平移个单位,向上平移个单位即可得,故根据平移可得到定点.【详解】由向右平移个单位,向上平移个单位得到,过定点,则过定点.【点睛】本题考查指数函数的图象恒过定点以及函数图象的平移问题.图象平移,定点也随之平移,平移后仍是定点.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)可用③来描述x,y之间的关系,(2)该企业要考虑转型.【解析】(1)由年利润是随着投资成本的递增而递增,可知①不符合,把,分别代入②③,求出函数解析式,再把代入所求的解析式中,若,则选择此模型;(2)由题知,则x>65,再由与比较,可作出判断.【小问1详解】由表格中的数据可知,年利润是随着投资成本的递增而递增,而①是单调递减,所以不符合题意;将,代入(,且),得,解得,∴.当时,,不符合题意;将,代入(,且),得,解得,∴.当时,;当时,.故可用③来描述x,y之间的关系.【小问2详解】由题知,解得∵年利润,∴该企业要考虑转型.18、(1);(2)年销售量为45万部时,最大利润为7150万元.【解析】(1)依题意,分和两段分别求利润=收入-成本,即得结果;(2)分和两段分别求函数的最大值,再比较两个最大值的大小,即得最大利润.【详解】解:(1)依题意,生产万部手机,成本是(万元),故利润,而,故,整理得,;(2)时,,开口向下的抛物线,在时,利润最大值为;时,,其中,在上单调递减,在上单调递增,故时,取得最小值,故在时,y取得最大值而,故年销售量为45万部时,利润最大,最大利润为7150万元.【点睛】方法点睛:分段函数求最值时,需要每一段均研究最值,再比较出最终的最值.19、(1)证明见解析;(2)【解析】(1)证明,再根据线面平行的判定定理即可证明结论;(2)即为异面直线与所成的角,求出即可【详解】(1)证:在正方体中,,且,∴四边形为平行四边形,∴,又∵平面,平面;∴平面;(2)解:∵,∴即为异面直线与所成的角,设正方体的边长为,则易得,∴为等边三角形,∴,故异面直线与所成的角为【点睛】本题主要考查线面平行的判定与异面直线所成的角,属于基础题20、(1);(2)见解析;(3).【解析】(1)由函数方程组可求与的解析式.(2)利用奇函数的定义和函数单调性定义可证明为奇函数且为上的增函数.(3)根据(2)中的结果可以得到在上有解,参变分离后利用换元法可求的取值范围.【详解】(1)由已知可得,则,由为奇函数和为偶函数,上式可化为,联合,解得.(2)由(1)得定义域,①由,可知为上的奇函数.②由,设,则,因为,故,,故即,故在上单调递增(3)由为上的奇函数,则等价于,又由在上单调递增,则上式等价于,即,记,令,可得,易得当时,即时,由题意知,,故所求实数的取值范围是.【点睛】本题考查与指数函数有关的复合函数的单调性和奇偶性以及函数不等式有解,前者根据定义进行判断,后者利用单调性和奇偶性可转化为常见不等式有解,本题综合性较高.21、(1)溶液中氢离子的浓度越大,溶液的酸性就越强(2)【解析】(1)根据复合函数的单调性判断说明;(2)由已知公式计算【小问1详解】根据对数的运算性质,有.在上,随着的增大,减小,相应地,也减小,即减小,所以,随着的增大,减小,即溶液中氢离子的浓度越大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年文化旅游产业开发合同
- 2024年房产交易垫资借款合同
- 2024年建筑工程项目咨询与管理合同
- 2024工业互联网平台搭建与运营合同
- 2024年房屋按揭贷款合同范本
- 2024年技术咨询委托协议
- 2024年房屋买卖预先约定合同
- 2024年投资者关系保密合同
- 2024年建筑携手:合作伙伴协议书
- 2024年房产购买延期还款合同
- 汽车企业信息化规划.ppt
- 产品设计和开发过程-审核检查表
- 外研社英语八年级上M10知识点整理gu
- 申请建立XX康复医院的可行性报告
- 幼儿园工程监理工作总结-监理工程的工作总结.doc
- 高等学校学生食堂伙食结构及成本核算指导意见
- 正交分解法教学设计
- 露天采石场开采方案
- 桥梁常见病害原因及技术处理方法
- 甲状腺癌 教学课件
- 客房部计划卫生表
评论
0/150
提交评论