随机事件的概率与古典概型学案-高三数学一轮复习_第1页
随机事件的概率与古典概型学案-高三数学一轮复习_第2页
随机事件的概率与古典概型学案-高三数学一轮复习_第3页
随机事件的概率与古典概型学案-高三数学一轮复习_第4页
随机事件的概率与古典概型学案-高三数学一轮复习_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

随机事件的概率【考点梳理】1.随机事件、必然事件、不可能事件事件确定事件必然事件在条件S下,一定会发生的事件,叫做相对于条件S的必然事件不可能事件在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件随机事件在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件2.概率(1)定义:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率.(2)范围:[0,1].(3)意义:概率从数量上反映了随机事件发生的可能性的大小.3.用频率估计概率一般地,如果在n次重复进行的试验中,事件A发生的频率为,其中,m是n次重复试验事件A发生的次数,则当n很大时,可以认为事件A发生的概率P(A)的估计值为.4.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件(A∩B=∅),则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件P(A)+P(B)=15.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).(6)如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1.(7)设A,B是一个随机试验中的两个事件,有P(A∪B)=P(A)+P(B)-P(A∩B).基本事件及古典概型的特点基本事件古典概型特点任何两个基本事件是互斥的试验中所有可能出现的基本事件只有有限个任何事件(除不可能事件)都可以表示成基本事件的和每个基本事件出现的可能性相等6.两个常用的概率模型古典概型的概率公式对于任何事件A,P(A)=eq\f(A包含的基本事件的个数,基本事件的总数).7.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算器模拟试验的方法为随机模拟方法或蒙特卡罗方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率fn(A)=eq\f(M,N)作为所求概率的近似值.一.随机事件的概率一、选择题1.下列说法正确的是()A.任何事件的概率总是在(0,1]之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定2.“一名同学一次掷出3枚骰子,3枚全是6点”的事件是()A.不可能事件B.必然事件C.可能性较大的随机事件D.可能性较小的随机事件3.某医院治疗一种疾病的治愈率为eq\f(1,5).那么,前4个病人都没有治愈,第5个患者治愈的概率是()A.1B.eq\f(1,5)C.eq\f(4,5)D.04.甲、乙两所学校举行了某次联考,甲校成绩的优秀率为30%,乙校成绩的优秀率为35%,现将两所学校的成绩放到一起,已知甲校参加考试的人数占总数的40%,乙校参加考试的人数占总数的60%,现从中任取一个学生成绩,则取到优秀成绩的概率为()A.0.165B.0.16C.0.32 D.0.335.甲、乙、丙三人是某商场的安保人员,根据值班需要甲连续工作2天后休息一天,乙连续工作3天后休息一天,丙连续工作4天后休息一天,已知3月31日这一天三人均休息,则4月份三人在同一天工作的概率为()A.B. C.D.6.“黑匣子”是飞机专用的电子记录设备之一,黑匣子有两个,为驾驶舱语音记录器和飞行数据记录器.某兴趣小组对黑匣子内部构造进行相关课题研究,记事件A为“只研究驾驶舱语音记录器”,事件B为“至少研究一个黑厘子”,事件C为“至多研究一个黑厘子”,事件D为“两个黑厘子都研究”.则()A.A与C是互斥事件B.B与D是对立事件C.B与C是对立事件D.C与D是互斥事件7.从一箱产品中随机地抽取一件,设事件{抽到一等品},事件{抽到二等品},事件{抽到三等品},且已知,,.则事件“抽到的不是一等品”的概率为()A.B.C.D.二、填空题8.从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球,不同的结果共有____________个.9.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.10.2022北京冬奥会期间,吉祥物冰墩墩成为“顶流”,吸引了许多人购买,使一“墩”难求.甲、乙、丙3人为了能购买到冰墩墩,商定3人分别去不同的官方特许零售店购买,若甲、乙2人中至少有1人购买到冰墩墩的概率为,丙购买到冰墩墩的概率为,则甲,乙、丙3人中至少有1人购买到冰墩墩的概率为__________.11.为迎接2022年北京冬奥会,某工厂生产了一批雪车,这批产品中按质量分为一等品、二等品、三等品.从这批雪车中随机抽取一件雪车检测,已知抽到不是三等品的概率为0.93,抽到一等品或三等品的概率为0.82,则抽到一等品的概率为___________.三、解答题12.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次.(1)估计从袋中任意摸出一个球,恰好是红球的概率;(2)请你估计袋中红球的个数.链接教材二.古典概型一、选择题1.下列是古典概型的是()A.任意抛掷两枚骰子,所得点数之和作为基本事件B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币首次出现正面为止2.小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9这10个数字中的6个数字组成的六位数,由于长时间未登录QQ,小明忘记了密码的最后一个数字,如果小明登录QQ时密码的最后一个数字随意选取,则恰好能登录的概率是()A.eq\f(1,105)B.eq\f(1,104)C.eq\f(1,102)D.eq\f(1,10)3.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是()A.eq\f(5,18)B.eq\f(4,9)C.eq\f(5,9)D.eq\f(7,9)4.已知集合A={2,3,4,5,6,7},B={2,3,6,9},在集合A∪B中任取一个元素,则它是集合A∩B中的元素的概率是()A.eq\f(2,3)B.eq\f(3,5)C.eq\f(3,7)D.eq\f(2,5)5.魔方又叫鲁比克方块(Rubk'sCube),是由匈牙利建筑学教授暨雕塑家鲁比克・艾尔内于1974年发明的机械益智玩具,与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议.三阶魔方可以看作是将一个各面上均涂有颜色的正方体的棱三等分,然后沿等分线把正方体切开所得,现将三阶魔方中1面有色的小正方体称为中心方块,2面有色的小正方体称为边缘方块,3面有色的小正方体称为边角方块,若从所有的小正方体中任取一个,恰好抽到中心方块的概率为(

)A.B.C.D.二解答题6.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据(单位:人)如下表所示.项目参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.7.设甲、乙、丙3个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这3个协会中抽取6名运动员组队参加比赛.(1)求应从这3个协会中分别抽取的运动员的人数.(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设事件A为“编号为A5和A6的2名运动员中至少有1人被抽到”,求事件A发生的概率.8.当前,全国上下正处在新冠肺炎疫情“外防输入,内防反弹”的关键时期,为深入贯彻落实习近平总书记关于疫情防控的重要指示要求,始终把师生生命安全和身体健康放在第一位.结合全国第个爱国卫生月要求,学校某班组织开展了“战疫有我,爱卫同行”防控疫情知识竞赛活动,抽取四位同学,分成甲、乙两组,每组两人,进行对战答题.规则如下:每次每位同学给出道题目,其中有道是送分题(即每位同学至少答对题).若每次每组答对的题数之和为的倍数,原答题组的人再继续答题;若答对的题数之和不是的倍数,就由对方组接着答题.假设每位同学每次答题之间相互独立,无论答对几道题概率都一样,且每次答题顺序不作考虑,第一次由甲组开始答题.求:(1)若第次由甲组答题的概率为,求;(2)前次答题中甲组恰好答题次的概率为多少?随机事件与概率【教师版】【考点梳理】1.随机事件、必然事件、不可能事件事件确定事件必然事件在条件S下,一定会发生的事件,叫做相对于条件S的必然事件不可能事件在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件随机事件在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件2.概率(1)定义:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率.(2)范围:[0,1].(3)意义:概率从数量上反映了随机事件发生的可能性的大小.3.用频率估计概率一般地,如果在n次重复进行的试验中,事件A发生的频率为,其中,m是n次重复试验事件A发生的次数,则当n很大时,可以认为事件A发生的概率P(A)的估计值为.4.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件(A∩B=∅),则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件P(A)+P(B)=15.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).(6)如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1.(7)设A,B是一个随机试验中的两个事件,有P(A∪B)=P(A)+P(B)-P(A∩B).基本事件及古典概型的特点基本事件古典概型特点任何两个基本事件是互斥的试验中所有可能出现的基本事件只有有限个任何事件(除不可能事件)都可以表示成基本事件的和每个基本事件出现的可能性相等6.两个常用的概率模型古典概型的概率公式对于任何事件A,P(A)=eq\f(A包含的基本事件的个数,基本事件的总数).7.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法或蒙特卡罗方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率fn(A)=eq\f(M,N)作为所求概率的近似值.一.随机事件的概率一、选择题1.下列说法正确的是()A.任何事件的概率总是在(0,1]之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定解析:由概率与频率的有关概念知,C正确.答案:C2.“一名同学一次掷出3枚骰子,3枚全是6点”的事件是()A.不可能事件B.必然事件C.可能性较大的随机事件D.可能性较小的随机事件解析:掷出的3枚骰子全是6点,可能发生.但发生的可能性较小.答案:D3.某医院治疗一种疾病的治愈率为eq\f(1,5).那么,前4个病人都没有治愈,第5个患者治愈的概率是()A.1B.eq\f(1,5)C.eq\f(4,5)D.0解析:每一个病人治愈与否都是随机事件,故第5个人被治愈的概率仍为eq\f(1,5).答案:B4.甲、乙两所学校举行了某次联考,甲校成绩的优秀率为30%,乙校成绩的优秀率为35%,现将两所学校的成绩放到一起,已知甲校参加考试的人数占总数的40%,乙校参加考试的人数占总数的60%,现从中任取一个学生成绩,则取到优秀成绩的概率为()A.0.165 B.0.16 C.0.32 D.0.33【答案】D【解析】【分析】利用概率的定义求解.【详解】解:由题意得:将两所学校的成绩放到一起,从中任取一个学生成绩,取到优秀成绩的概率为,故选:D5.甲、乙、丙三人是某商场的安保人员,根据值班需要甲连续工作2天后休息一天,乙连续工作3天后休息一天,丙连续工作4天后休息一天,已知3月31日这一天三人均休息,则4月份三人在同一天工作的概率为()A. B. C. D.【答案】B【解析】【分析】列举出三人所有工作日,由古典概型公式可得.【详解】解:甲工作的日期为1,2,4,5,7,8,10,…,29.乙工作的日期为1,2,3,5,6,7,9,10,…,30.丙工作的日期为1,2,3,4,6,7,8,9,…,29.在同一天工作的日期为1,2,7,11,13,14,17,19,22,23,26,29∴三人同一天工作的概率为.故选:B.6.“黑匣子”是飞机专用的电子记录设备之一,黑匣子有两个,为驾驶舱语音记录器和飞行数据记录器.某兴趣小组对黑匣子内部构造进行相关课题研究,记事件A为“只研究驾驶舱语音记录器”,事件B为“至少研究一个黑厘子”,事件C为“至多研究一个黑厘子”,事件D为“两个黑厘子都研究”.则()A.A与C是互斥事件 B.B与D是对立事件C.B与C是对立事件D.C与D是互斥事件【答案】D【解析】【分析】根据互斥事件和对立事件的概念即可判断得选项.【详解】事件A为“只研究驾驶舱语音记录器”;事件B为“至少研究一个黑厘子”,包含“研究驾驶舱语音记录器”或“研究飞行数据记录器”,或“研究驾驶舱语音记录器和研究飞行数据记录器”;事件C为“至多研究一个黑厘子”,包含“研究驾驶舱语音记录器”或“研究飞行数据记录器”,或两个黑匣子都不研究;事件D为“两个黑厘子都研究”.即“研究驾驶舱语音记录器和研究飞行数据记录器”;所以对于A,事件A与事件C不是互斥事件,故A不正确;对于B,事件B与事件D不是对立事件,故B不正确;对于C,事件B与事件C不是对立事件,故C不正确;对于D,事件C和事件D不能同时发生,故C与D是互斥事件.故选:D.7.从一箱产品中随机地抽取一件,设事件{抽到一等品},事件{抽到二等品},事件{抽到三等品},且已知,,.则事件“抽到的不是一等品”的概率为()A. B. C. D.【答案】D【解析】【分析】根据对立事件的概率计算公式,由题中条件,即可求解.【详解】∵抽到的不是一等品的对立事件是抽到一等品,事件{抽到一等品},,∴抽到不是一等品的概率是.故选:D.二、填空题8.从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球,不同的结果共有____________个.解析:结果:(红球,白球),(红球,黑球),(白球,黑球).答案:39.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.解析:设进行了n次试验,则有eq\f(10,n)=0.02,得n=500,故进行了500次试验.答案:50010.2022北京冬奥会期间,吉祥物冰墩墩成为“顶流”,吸引了许多人购买,使一“墩”难求.甲、乙、丙3人为了能购买到冰墩墩,商定3人分别去不同的官方特许零售店购买,若甲、乙2人中至少有1人购买到冰墩墩的概率为,丙购买到冰墩墩的概率为,则甲,乙、丙3人中至少有1人购买到冰墩墩的概率为___________.【答案】【解析】【分析】先算出甲乙2人均购买不到冰墩墩的概率,然后算出丙购买不到冰墩墩的概率,进而算出甲乙丙3人都购买不到冰墩墩的概率,最后算出答案.【详解】因为甲乙2人中至少有1人购买到冰墩墩的概率为,所以甲乙2人均购买不到冰墩墩的概率.同理,丙购买不到冰墩墩的概率.所以,甲乙丙3人都购买不到冰墩墩的概率,于是甲乙丙3人中至少有1人购买到冰墩墩的概率.故答案为:.(2022·江苏·南京市中华中学高一期中)11.为迎接2022年北京冬奥会,某工厂生产了一批雪车,这批产品中按质量分为一等品、二等品、三等品.从这批雪车中随机抽取一件雪车检测,已知抽到不是三等品的概率为0.93,抽到一等品或三等品的概率为0.82,则抽到一等品的概率为___________.【答案】【解析】【分析】由互斥事件的概率加法公式进行求解即可.【详解】设抽到一等品,二等品,三等品的事件分别为,,,则,解得,所以抽到一等品的概率为.故答案为:.二、解答题12.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次.(1)估计从袋中任意摸出一个球,恰好是红球的概率;(2)请你估计袋中红球的个数.解:(1)因为20×400=8000,所以摸到红球的频率为:eq\f(6000,8000)=0.75,因为试验次数很大,大量试验时,频率接近于理论频率,所以估计从袋中任意摸出一个球,恰好是红球的概率是0.75.(2)设袋中红球有x个,根据题意得:eq\f(x,x+5)=0.75,解得x=15,经检验x=15是原方程的解.所以估计袋中红球接近15个.二.古典概型一、选择题1.下列是古典概型的是()A.任意抛掷两枚骰子,所得点数之和作为基本事件B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币首次出现正面为止解析:A项中由于点数的和出现的可能性不相等,故A不是;B项中的基本事件是无限的,故B不是;C项中满足古典概型的有限性和等可能性,故C是;D项中基本事件既不是有限个也不具有等可能性,故D不是.答案:C2.小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9这10个数字中的6个数字组成的六位数,由于长时间未登录QQ,小明忘记了密码的最后一个数字,如果小明登录QQ时密码的最后一个数字随意选取,则恰好能登录的概率是()A.eq\f(1,105)B.eq\f(1,104)C.eq\f(1,102)D.eq\f(1,10)解析:只考虑最后一位数字即可,从0至9这10个数字中随机选择一个作为密码的最后一位数字有10种可能,选对只有一种可能,所以选对的概率是eq\f(1,10).答案:D3.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是()A.eq\f(5,18)B.eq\f(4,9)C.eq\f(5,9)D.eq\f(7,9)答案:C4.已知集合A={2,3,4,5,6,7},B={2,3,6,9},在集合A∪B中任取一个元素,则它是集合A∩B中的元素的概率是()A.eq\f(2,3)B.eq\f(3,5)C.eq\f(3,7)D.eq\f(2,5)解析:A∪B={2,3,4,5,6,7,9},A∩B={2,3,6},所以由古典概型的概率公式得,所求的概率是eq\f(3,7).答案:C5.魔方又叫鲁比克方块(Rubk'sCube),是由匈牙利建筑学教授暨雕塑家鲁比克・艾尔内于1974年发明的机械益智玩具,与华容道、独立钻石棋一起被国外智力专家并称为智力游戏界的三大不可思议.三阶魔方可以看作是将一个各面上均涂有颜色的正方体的棱三等分,然后沿等分线把正方体切开所得,现将三阶魔方中1面有色的小正方体称为中心方块,2面有色的小正方体称为边缘方块,3面有色的小正方体称为边角方块,若从所有的小正方体中任取一个,恰好抽到中心方块的概率为(

)A. B. C. D.【答案】A【分析】沿等分线把正方体切开,共有27个同样大小的小正方体,然后数出1面有色、2面有色和3面有色的小正方体的个数,可通过古典概型运算公式求得答案.【详解】沿等分线把正方体切开,得到27个同样大小的小正方体,1面有色的小正方体有6个,2面有色的小正方体有12个,3面有色的小正方体有8个,所以恰好抽到的是中心方块的概率是.故选:A.三、解答题6.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据(单位:人)如下表所示.项目参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加一个社团的概率为P=eq\f(15,45)=eq\f(1,3).(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A1被选中且B1未被选中”所包含的基本事件有:{A1,B2},{A1,B3},共2个.因此A1被选中且B1未被选中的概率为P=eq\f(2,15).7.设甲、乙、丙3个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这3个协会中抽取6名运动员组队参加比赛.(1)求应从这3个协会中分别抽取的运动员的人数.(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设事件A为“编号为A5和A6的2名运动员中至少有1人被抽到”,求事件A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论