山东南山集团东海外国语学校2023年数学八上期末联考模拟试题含解析_第1页
山东南山集团东海外国语学校2023年数学八上期末联考模拟试题含解析_第2页
山东南山集团东海外国语学校2023年数学八上期末联考模拟试题含解析_第3页
山东南山集团东海外国语学校2023年数学八上期末联考模拟试题含解析_第4页
山东南山集团东海外国语学校2023年数学八上期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东南山集团东海外国语学校2023年数学八上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,已知直线y=x+4与x轴、y轴分别交于A、B两点,C点在x轴正半轴上且OC=OB,点D位于x轴上点C的右侧,∠BAO和∠BCD的角平分线AP、CP相交于点P,连接BC、BP,则∠PBC的度数为()A.43 B.44 C.45 D.462.如图,D,E分别在AB,AC上,,添加下列条件,无法判定的是()A. B. C. D.3.的整数部分是,小数部分是,则的值是()A.7 B.1 C. D.104.若m=,则m介于哪两个整数之间()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<55.如图,在的正方形网格中,的大小关系是()A. B.C. D.6.下列长度的线段能组成三角形的是()A.3、4、8 B.5、6、11 C.5、6、10 D.3、5、107.如图,在△ABC中,AB=AC,∠A=1200,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.1.5cm B.2cm C.2.5cm D.3cm8.如图,中,于,平分交于,点到的距离为,则的周长为()A. B. C. D.9.如图,长方形中,,点E是边上的动点,现将沿直线折叠,使点C落在点F处,则点D到点F的最短距离为()A.5 B.4 C.3 D.210.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7C.n=8 D.n=9二、填空题(每小题3分,共24分)11.16的平方根是.12.分解因式:2a2-4ab+2b2=________.13.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.14.在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)15.分式的值比分式的值大3,则x为______.16.把分式与进行通分时,最简公分母为_____.17.如图于,,则的长度为____________18.如图,在平面直角坐标系中,已知点A(2,-2),在坐标轴上确定一点B,使得△AOB是等腰三角形,则符合条件的点B共有________个.三、解答题(共66分)19.(10分)如图,已知AB=AC,点D、E在BC上,且∠ADE=∠AED,求证:BD=CE.20.(6分)如图,函数y=2x+4的图象与正比例函数的图象相交于点A(﹣1,2),且与x轴、y轴分别交于点B、C.(1)求正比例函数y=kx的解析式;(2)求两个函数图象与y轴围成图形的面积.21.(6分)如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度数.22.(8分)在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.23.(8分)如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,(1)求∠ACB的度数;(2)HE=AF24.(8分)现要在三角地ABC内建一中心医院,使医院到A、B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.25.(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.26.(10分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】依据一次函数即可得到AO=BO=4,再根据OC=OB,即可得到,,过P作PE⊥AC,PF⊥BC,PG⊥AB,即可得出BP平分,进而得到.【详解】在中,令,则y=4;令y=0,则,∴,,∴,又∵CO=BO,BO⊥AC,∴与是等腰直角三角形,∴,,如下图,过P作PE⊥AC,PF⊥BC,PG⊥AB,∵和的角平分线AP,CP相交于点P,∴,∴BP平分,∴,故选:C.【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线性质证明方法是解决本题的关键.2、A【分析】根据三角形全等的判定定理,逐一判断选项,即可.【详解】∵,∠A=∠A,若添加,不能证明,∴A选项符合题意;若添加,根据AAS可证明,∴B选项不符合题意;若添加,根据AAS可证明,∴C选项不符合题意;若添加,根据ASA可证明,∴D选项不符合题意;故选A.【点睛】本题主要考查三角形全等的判定方法,理解AAA不能判定两个三角形全等,是解题的关键.3、B【分析】由的整数部分是,小数部分是,即可得出x、y的值,然后代入求值即可.【详解】解:∵,∴的整数部分,小数部分,∴.故选:B.【点睛】本题主要考查实数,关键是运用求一个平方根的整数部分和小数部分的方法得出未知数的值,然后代入求值即可.4、C【分析】由可得答案.【详解】解:∵,∴3<<4,∴3<m<4,故选:C.【点睛】本题考查无理数的估算,用先平方再比较的一般方法比较简单.5、B【分析】利用“边角边”证明△ABG和△CDH全等,根据全等三角形对应角相等求出∠ABG=∠DCH,再根据两直线平行,内错角相等求出∠CBG=∠BCH,从而得到∠1=∠2,同理求出∠DCH=∠CDM,结合图形判断出∠BCH>∠EDM,从而得到∠2>∠3,即可得解.【详解】解:如图,∵BG=CH,AG=DH,∠AGB=∠CHD=90°,∴△ABG≌△CDH,∴∠ABG=∠DCH,∵BG//CH,∴∠CBG=∠BCH,∴∠1=∠2,同理可得:∠DCH=∠CDM,但∠BCH>∠EDM,∴∠2>∠3,∴∠1=∠2>∠3,故选B.【点睛】本题考查平行线的性质和全等三角形的判定和性质;把∠1、∠2、∠3拆成两个角,能利用全等三角形和平行线得出相关角相等,是解题关键.6、C【解析】解:A、3+4<8,故不能组成三角形,故A错误;B、5+6=11,故不能组成三角形,故B错误;C、5+6>10,故能组成三角形,故C正确;D、3+5<10,故不能组成三角形,故D错误.故选C.点睛:本题主要考查了三角形三边的关系,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】请在此输入详解!7、B【解析】连接AM、AN,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,∵EM垂直平分AB,NF垂直平分AC,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠NAC=∠C=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴△AMN是等边三角形,∴AM=MN=NC,∴BM=MN=CN,∵BM+MN+CN=BC=6cm,∴MN=2cm,故选B.8、C【分析】由角平分线的性质易得CE=点E到AB的距离等于,根据等角的余角相等可得得,再证明△CEF是等边三角形即可得到结论.【详解】∵,于点,平分∴CE=点E到AB的距离等于,,,,,,,∵,∴,∵,∴,∵∴△CEF是等边三角形∴△CEF的周长为:4×3=12cm.故选:C.【点睛】此题主要考查了角平分线的性质和等边三角形的判定,注意利用直角三角形的性质.9、B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【详解】解:连接DB,DF,

在△FDB中,DF+BF>DB,

由折叠的性质可知,FB=CB=,

∴当F在线段DB上时,点D到点F的距离最短,

在Rt△DCB中,,

此时DF=8-4=4,

故选:B.【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10、C【分析】根据n边形的内角和等于外角和的3倍,可得方程180(n-2)=360×3,再解方程即可.【详解】解:由题意得:180(n-2)=360×3,

解得:n=8,

故选C.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.二、填空题(每小题3分,共24分)11、±1.【详解】由(±1)2=16,可得16的平方根是±1.12、【分析】根据先提取公因式再利用公式法因式分解即可.【详解】原式=2(a2-2ab+b2)=【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.13、3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.14、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.15、1【解析】先根据题意得出方程,求出方程的解,再进行检验,最后得出答案即可.【详解】根据题意得:-=1,方程两边都乘以x-2得:-(1-x)-1=1(x-2),解得:x=1,检验:把x=1代入x-2≠0,所以x=1是所列方程的解,所以当x=1时,的值比分式的值大1.【点睛】本题考查了解分式方程,能求出分式方程的解是解此题的关键.16、(x﹣y)2(x+y)【分析】根据因式分解可得,,然后根据最简公分母的定义进行分析即可得出答案.【详解】解:把分式与进行通分时,x2﹣y2=(x+y)(x﹣y),故最简公分母为:(x﹣y)2(x+y).故答案为:(x﹣y)2(x+y).【点睛】本题主要考察了最简公分母的定义,解题的关键是对分母进行因式分解.17、1【解析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=PC=×2=1(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=1,故选:D.【点睛】此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.18、1【分析】OA是等腰三角形的一边,确定第三点B,可以分OA是腰和底边两种情况进行讨论即可.【详解】(1)若AO作为腰时,有两种情况,当A是顶角顶点时,B是以A为圆心,以OA为半径的圆与坐标轴的交点,共有2个(除O点);当O是顶角顶点时,B是以O为圆心,以OA为半径的圆与坐标轴的交点,有4个;(2)若OA是底边时,B是OA的中垂线与坐标轴的交点,有2个.以上1个交点没有重合的.故符合条件的点有1个.故答案为:1.【点睛】本题考查了坐标与图形的性质和等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底,哪边是腰时,应在符合三角形三边关系的前提下分类讨论.三、解答题(共66分)19、见解析【分析】由AB=AC依据等边对等角得到∠B=∠C,则可用AAS证明≌,进而得到,等式两边减去重合部分即得所求证.【详解】解:∵在中,AB=AC,∴∠B=∠C,∵在和中∴≌(AAS)∴,∴∴BD=CE.【点睛】本题考查三角形中等角对等边、等边对等角,三角形全等的判定及性质.解题的关键是熟练掌握全等三角形的判定方法.20、(1)y=-1x;(1)1【分析】(1)将点A(-1,1)代入y=kx求得k的值即可得出答案;

(1)先求出y=1x+4与y轴的交点,再根据三角形的面积公式求出△OAC的面积即可得.【详解】(1)将点A(﹣1,1)代入y=kx,得:﹣k=1,则k=﹣1,所以正比例函数解析式为y=﹣1x;(1)y=1x+4中令x=0,得:y=4,∴点C坐标为(0,4),则OC=4,所以两个函数图象与y轴围成图形的面积为×4×1=1.【点睛】本题主要考查两直线相交于平行的问题,解题的关键是掌握待定系数法求函数解析式及直线与坐标轴的交点坐标的求法.21、∠DAC=36°;∠BOA=117°【分析】首先利用AD是高,求得∠ADC,进一步求得∠DAC度数可求;利用三角形的内角和求得∠ABC,再由BF是∠ABC的角平分线,求得∠ABO,故∠BOA的度数可求.【详解】解:∵AD是高∴∠ADC=90°∵∠C=54°∴∠DAC=180°﹣90°﹣54°=36°∵∠BAC=80°,∠C=54°,AE是角平分线∴∠BAO=40°,∠ABC=46°∵BF是∠ABC的角平分线∴∠ABO=23°∴∠BOA=180°﹣∠BAO﹣∠ABO=117°【点睛】本题考查了利用角平分线的性质、三角形的内角和定理解决问题的能力,结合图形,灵活运用定理解决问题.22、(1)S=4﹣m,0<m<4;(2)(1,);(3)(2,1)【分析】(1)根据点A、P的坐标求得△AOP的底边与高线的长度;然后根据三角形的面积公式即可求得S与m的函数关系式;(2)将S=3代入(1)中所求的式子,即可求出点P的坐标;(3)由直线OP平分△AOB的面积,可知OP为△AOB的中线,点P为AB的中点,根据中点坐标公式即可求解.【详解】解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质.23、(1)67.5°.(2)证明见解析.【分析】(1)利用等边对等角可证:∠ACB=∠ABC,根据三角形内角和定理可以求出∠ACB的度数;(2)连接HB,根据垂直平分线的性质可证AE⊥BC,BE=CE,再根据ASA可证:Rt△BDC≌Rt△ADF,根据全等三角形的性质可证:BC=AF,从而可以求出HE=BE=BC,因为AF=BC,所以可证结论成立.【详解】解:(1)∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=45°,∴∠ACB=∠ABC=(180°-∠BAC)=(180°-45°)=67.5°;(2)连结HB,

∵AB=AC,AE平分∠BAC,∴AE⊥BC,BE=CE,∴∠CAE+∠C=90°,∵BD⊥AC,∴∠CBD+∠C=90°,∴∠CAE=∠CBD,∵BD⊥AC,D为垂足,∴∠DAB+∠DBA=90°,∵∠DAB=45°,∴∠DBA=45°,∴∠DBA=∠DAB,∴DA=DB,在Rt△BDC和Rt△ADF中,∵∴Rt△BDC≌Rt△ADF(ASA),∴BC=AF,∵DA=DB,点G为AB的中点,∴DG垂直平分AB,∵点H在DG上,∴HA=HB,∴∠HAB=∠HBA=∠BAC=22.5°,∴∠BHE=∠HAB+∠HBA=45°,∴∠HBE=∠ABC-∠ABH=67.5°-22.5°=45°,∴∠BHE=∠HBE,∴HE=BE=BC,∵AF=BC,∴HE=AF.考点:1.全等三角形的判定与性质;2.垂直平分线的性质;3.等腰直角三角形的判定与性质.24、作图见解析.【解析】根据线段垂直平分线性质作出AB的垂直平分线,根据角平分线性质作出∠BAC的角平分线,即可得出答案.解:

作AB的垂直平分线EF,作∠BAC的角平分线AM,两线交于P,

则P为这个中心医院的位置.25、解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)甲、乙单位购买本次足球赛门票分别为500张、200张.【分析】(1)根据题意可直接写出用x表示的总费用表达式;(2)根据方案一与方案二的函数关系式分类讨论;(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论