




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于二阶方阵的特殊n阶方阵幂的计算公式梁永博,孙文豪,魏东,周传伟(教育实验学院,电子信息类,13级)摘要关键词矩阵幂特征多项式零化多项式引言一般情况下,矩阵幂的计算是比较繁琐的,高等代数教科书上通常介绍了两种方法。一是当矩阵可对角化时,即存在对角矩阵D和可逆矩阵P使A=P-1DP时,有An=P-1DnP。二是利用若尔当标准形的方法。上述两种方法的一个显著特点是将矩阵分解成几个矩阵的乘积,从而给计算带来方便。对此我们很容易产生这样的想法:将矩阵分解成两个矩阵的和也会带来方便,进一步思考,不难看出,若矩阵A有分解:A=B+C,且BC=CB=O,则有An=Bn+Cn。当Bn,Cn易算时,这就是一种简便的方法。接下来便是从较特殊的矩阵开始寻找这样的分解。主要定理的证明2阶矩阵非常简单,特别是它的特征多项式是2次的,能分解成一次因式的乘积=(-α)(-β),其中α,β是A的特征值。由哈密顿-凯莱定理可得(A)=(A-αE)(A-βE)=0,(1)其中E是单位矩阵。让我们讨论能否利用(1)式来解决下面的问题呢?问题1设2阶矩阵A的特征值为α和β,求矩阵A的幂An的计算公式。由问题1可见,对2阶矩阵,我们的想法能够实现,而当矩阵A的阶大于2,且A有三个不同的特征值时,上述推导过程不宜推广。当A的不同的特征值至多有两个,且存在2次零化多项式时,上述推导过程完全适用,因而所得结果与2阶矩阵时相同。下面我们讨论问题2:问题2求下列三阶矩阵的A与An:【问题1】由(1)式知,(A-αE)(A-βE)=(A-βE)(A-αE)=0下面利用A-αE和A-βE来寻求A的和式分解。当α≠β时,设B=a(A-αE),C=b(A-βE),使得A=B+C.那么只要如下选取a,b即可:a=,b=不难发现,()2=,()2=。从而B2=βB,C2=αC,于是An=βn()+αn()=A-E当α=β时,由(1)式得,(A-αE)2=0,故(A-αE)k=0(k≥2),又因A=αE+(A-αE),从而An=αnE+nαn-1(A-αE).【问题2】1)2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蒸汽管网培训课件
- 写字坐姿培训课件图片
- 中职新生入学纪律教育
- 中国制造课件-教科版
- 培训学习汇报
- 高龄心房颤动患者抗凝治疗中国专家共识解读 2
- 扒房知识培训
- 中国全国各地地区课件
- 中国体育精神课件
- 中国传统饰品绘画课件
- 安徽省马鞍山市2024-2025学年高一数学下学期期末考试试题含解析
- 车库业主与租赁者安装充电桩协议书
- 劳务班组施工合同范本(2024版)
- RBA管理体系程序文件(系列)
- 四川省眉山市2023-2024学年高一下学期期末考试英语试题(无答案)
- 2022-2023学年浙江省宁波市江北区人教PEP版三年级下册期末统考英语试卷
- 期末考试卷2《心理健康与职业生涯》(原题卷)高一思想政治课(高教版2023基础模块)
- 数字图像处理与机器视觉智慧树知到期末考试答案章节答案2024年温州理工学院
- 《人教版》七年级下册地理《人文地理》知识
- 人工智能创业项目计划书
- (正式版)JBT 106-2024 阀门的标志和涂装
评论
0/150
提交评论