版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
编辑本段常见公式2两点之间线段最短3同角或等角的补角相等,有且只有一条4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形任意两边的和大于第三边16推论三角形任意两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等且互相平行54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形平行四边形判定定理5两组对边分别平行的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形矩形判定定理3有一个角是直角的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形菱形判定定理3有一组邻边相等的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形两腰相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a2-ab+b2)a^3-b^3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式Δ=b2-4ac=0注:方程有两个相等的实根Δ=b2-4ac>0注:方程有两个不等的实根Δ=b2-4ac<0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R(注:其中R表示三角形的外接圆半径)余弦定理b^2=a^2+c^2-2accosB(注:角B是边a和边c的夹角)圆的标准方程(x-a)2+(y-b)2=r2(注:(a,b)是圆心坐标)圆的一般方程x2+y2+Dx+Ey+F=0(注:D^2+E^2-4F>0)抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2π*h圆锥侧面积S=1/2*c*l=π*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=π*r^2h编辑本段基本公式(1)抛物线y=ax^2+bx+c(a≠0)就是y等于a乘以x的平方加上b乘以x再加上c置于平面直角坐标系中a>0时开口向上a<0时开口向下(a=0时为一元一次函数)c>0时函数图像与y轴正方向相交c<0时函数图像与y轴负方向相交c=0时抛物线经过原点b=0时抛物线对称轴为y轴(当然a=0且b≠0时该函数为一次函数)还有顶点公式y=a(x+h)*2+k,(h,k)=(-b/(2a),(4ac-b^2)/(4a))就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值和对称轴抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py(2)圆球体积=(4/3)π(r^3)面积=π(r^2)周长=2πr=πd圆的标准方程(x-a)^2+(y-b)^2=r^2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D^2+E^2-4F>0(一)椭圆周长计算公式按标准椭圆方程:长半轴a,短半轴b设λ=(a-b)/(a+b)椭圆周长L=π(a+b)(1+λ^2/4+λ^4/64+λ^6/256+25λ^8/16384+......)简化:L≈π[1.5(a+b)-sqrt(ab)]或L≈π(a+b)(64-3λ^4)/(64-16λ^2)(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。椭球物体体积计算公式椭圆的长半径*短半径*π*高(3)三角函数和差角公式sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);cot(A+B)=(cosAcotB-1)/(cosB+cotA);cot(A-B)=(cosAcotB+1)/(cosB-cotA);倍角公式tan2A=2tanA/(1-tan^2A);cot2A=(cot^2A-1)/2cota;cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a;sin2A=2sinAcosA=2/(tanA+cotA);另:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0;cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2;tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0;四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA)*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B);2cosAsinB=sin(A+B)-sin(A-B);2cosAcosB=cos(A+B)+cos(A-B);-2sinAsinB=cos(A+B)-cos(A-B);sinA+sinB=2sin((A+B)/2)cos((A-B)/2;cosA+cosB=2cos((A+B)/2)sin((A-B)/2);tanA+tanB=sin(A+B)/cosAcosB;tanA-tanB=sin(A-B)/cosAcosB;cotA+cotB=sin(A+B)/sinAsinB;-cotA+cotB=sin(A+B)/sinAsinB;降幂公式sin²(A)=(1-cos(2A))/2=versin(2A)/2;cos²(α)=(1+cos(2A))/2=covers(2A)/2;tan²(α)=(1-cos(2A))/(1+cos(2A));正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB注:角B是边a和边c的夹角诱导公式公式一:弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)sec(2kπ+α)=secα(k∈Z)csc(2kπ+α)=cscα(k∈Z)角度制下的角的表示:sin(α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z)tan(α+k·360°)=tanα(k∈Z)cot(α+k·360°)=cotα(k∈Z)sec(α+k·360°)=secα(k∈Z)csc(α+k·360°)=cscα(k∈Z)公式二:弧度制下的角的表示:sin(π+α)=-sinα(k∈Z)cos(π+α)=-cosα(k∈Z)tan(π+α)=tanα(k∈Z)cot(π+α)=cotα(k∈Z)sec(π+α)=-secα(k∈Z)csc(π+α)=-cscα(k∈Z)角度制下的角的表示:sin(180°+α)=-sinα(k∈Z)cos(180°+α)=-cosα(k∈Z)tan(180°+α)=tanα(k∈Z)cot(180°+α)=cotα(k∈Z)sec(180°+α)=-secα(k∈Z)csc(180°+α)=-cscα(k∈Z)公式三:sin(-α)=-sinα(k∈Z)cos(-α)=cosα(k∈Z)tan(-α)=-tanα(k∈Z)cot(-α)=-cotα(k∈Z)sec(-α)=secα(k∈Z)csc-α)=-cscα(k∈Z)公式四:弧度制下的角的表示:sin(π-α)=sinα(k∈Z)cos(π-α)=-cosα(k∈Z)tan(π-α)=-tanα(k∈Z)cot(π-α)=-cotα(k∈Z)sec(π-α)=-secα(k∈Z)cot(π-α)=cscα(k∈Z)角度制下的角的表示:sin(180°-α)=sinα(k∈Z)cos(180°-α)=-cosα(k∈Z)tan(180°-α)=-tanα(k∈Z)cot(180°-α)=-cotα(k∈Z)sec(180°-α)=-secα(k∈Z)csc(180°-α)=cscα(k∈Z)公式五:弧度制下的角的表示:sin(2π-α)=-sinα(k∈Z)cos(2π-α)=cosα(k∈Z)tan(2π-α)=-tanα(k∈Z)cot(2π-α)=-cotα(k∈Z)sec(2π-α)=secα(k∈Z)csc(2π-α)=-cscα(k∈Z)角度制下的角的表示:sin(360°-α)=-sinα(k∈Z)cos(360°-α)=cosα(k∈Z)tan(360°-α)=-tanα(k∈Z)cot(360°-α)=-cotα(k∈Z)sec(360°-α)=secα(k∈Z)csc(360°-α)=-cscα(k∈Z)公式六:弧度制下的角的表示:sin(π/2+α)=cosα(k∈Z)cos(π/2+α)=—sinα(k∈Z)tan(π/2+α)=-cotα(k∈Z)cot(π/2+α)=-tanα(k∈Z)sec(π/2+α)=-cscα(k∈Z)csc(π/2+α)=secα(k∈Z)角度制下的角的表示:sin(90°+α)=cosα(k∈Z)cos(90°+α)=-sinα(k∈Z)tan(90°+α)=-cotα(k∈Z)cot(90°+α)=-tanα(k∈Z)sec(90°+α)=-cscα(k∈Z)csc(90°+α)=secα(k∈Z)⒉弧度制下的角的表示:sin(π/2-α)=cosα(k∈Z)cos(π/2-α)=sinα(k∈Z)tan(π/2-α)=cotα(k∈Z)cot(π/2-α)=tanα(k∈Z)sec(π/2-α)=cscα(k∈Z)csc(π/2-α)=secα(k∈Z)角度制下的角的表示:sin(90°-α)=cosα(k∈Z)cos(90°-α)=sinα(k∈Z)tan(90°-α)=cotα(k∈Z)cot(90°-α)=tanα(k∈Z)sec(90°-α)=cscα(k∈Z)csc(90°-α)=secα(k∈Z)3弧度制下的角的表示:sin(3π/2+α)=-cosα(k∈Z)cos(3π/2+α)=sinα(k∈Z)tan(3π/2+α)=-cotα(k∈Z)cot(3π/2+α)=-tanα(k∈Z)sec(3π/2+α)=cscα(k∈Z)csc(3π/2+α)=-secα(k∈Z)角度制下的角的表示:sin(270°+α)=-cosα(k∈Z)cos(270°+α)=sinα(k∈Z)tan(270°+α)=-cotα(k∈Z)cot(270°+α)=-tanα(k∈Z)sec(270°+α)=cscα(k∈Z)csc(270°+α)=-secα(k∈Z)4弧度制下的角的表示:sin(3π/2-α)=-cosα(k∈Z)cos(3π/2-α)=-sinα(k∈Z)tan(3π/2-α)=cotα(k∈Z)cot(3π/2-α)=tanα(k∈Z)sec(3π/2-α)=-secα(k∈Z)csc(3π/2-α)=-secα(k∈Z)角度制下的角的表示:sin(270°-α)=-cosα(k∈Z)cos(270°-α)=-sinα(k∈Z)tan(270°-α)=cotα(k∈Z)cot(270°-α)=tanα(k∈Z)sec(270°-α)=-cscα(k∈Z)csc(270°-α)=-secα(k∈Z)(4)反三角函数arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2arctanx+arccotx=π/2(5)数列等差数列通项公式:an﹦a1﹢(n-1)d等差数列前n项和:Sn=[n(A1+An)]/2=nA1+[n(n-1)d]/2等比数列通项公式:an=a1*q^(n-1);等比数列前n项和:Sn=a1(1-q^n)/(1-q)=(a1-a1q^n)/(1-q)=a1/(1-q)-a1/(1-q)*q^n(n≠1)某些数列前n项和:1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n^22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3(6)乘法与因式分解因式分解a^2-b^2=(a+b)(a-b)a^2±2ab+b^2=(a±b)^2a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b)(a^2+ab+b^2)a^3±3a^2b+3ab^2±b^3=(a±b)^3乘法公式把上面的因式分解公式左边和右边颠倒过来就是乘法公式(7)三角不等式-|a|≤a≤|a||a|≤b<=>-b≤a≤b|a|≤b<=>-b≤a≤b|a|-|b|≤|a+b|≤|a|+|b||a|≤b<=>-b≤a≤b|a|-|b|≤|a-b|≤|a|+|b||z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1±z2±...±zn|≤|z1|+|z2|+...+|zn|(8)一元二次方程一元二次方程的解wx1=-b+√(b^2-4ac)/2ax2=-b-√(b^2-4ac)/2a根与系数的关系(韦达定理)x1+x2=-b/a;x1*x2=c/a判别式△=b^2-4ac=0则方d程有相等的个实根△>0则方程有两个不相等的两实根△<0则方程有两共轭复数根d(没有实根)编辑本段对数基本性质如果a>0,且a≠1,M>0,N>0,那么:1、a^log(a)(b)=b2、log(a)(a)=13、log(a)(MN)=log(a)(M)+log(a)(N);4、log(a)(M÷N)=log(a)(M)-log(a)(N);5、log(a)(M^n)=nlog(a)(M)6、log(a)[M^(1/n)]=log(a)(M)/n编辑本段公式分类公式表达式圆的标准方程(x-a)^2+(y-b)^2=r^2注:(a,b)是圆心坐标圆的一般方程x^2+y^2+Dx+Ey+F=0注:△=D^2+E^2-4F>0抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4π*r2圆柱侧面积S=c*h=2π*h圆锥侧面积S=1/2*c*l=π*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=π*r2h图形周长面积体积公式长方形的周长=(长+宽)×2c=2〔a+b〕正方形的周长=边长×4c=4a长方形的面积=长×宽s=ab正方形的面积=边长×边长s=a2三角形的面积=底×高÷2已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦秦九韶公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]}(“三斜求积”南宋秦九韶)注:秦九韶公式与海伦公式等价|ab1|S△=1/2*|cd1||ef1|【|ab1||cd1|为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d),C(e,f),这里|ef1|ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=d=2r圆的周长=πd=2πr圆的面积=πr^2长方体的表面积=(长×宽+宽×高+高×长)×2s=2〔ab+bc+ca〕长方体的体积=长×宽×高v=abc正方体的表面积=棱长×棱长×6s=6a^2正方体的体积=棱长×棱长×棱长v=a^3圆柱的侧面积=底面圆的周长×高s=ch圆柱的表面积=上下底面面积+侧面积s=2╥r^2圆柱的体积=底面积×高v=sh圆锥的体积=底面积×高÷3v=sh÷3柱体体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a^2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长其中s=(a+b+c)/2S=ah/2h-a边上的高=ab/2×sinCs-周长的一半=[s(s-a)(s-b)(s-c)]1/2A,B,C-内角=a^2sinBsinC/(2sinA)编辑本段概率公式定义:p(A)=m/n,全概率公式(贝页斯公式)某事件A是有B,C,D三种因素造成的,求这一事件发生的概率p(A)=p(A/B)p(B)+p(A/C)p(C)+p(A/D)p(D)其中p(A/B)叫条件概率,即:在B发生的情况下,A发生的概率伯努力公式是用以求某事件已经发生,求其是哪种因素的概率造成的好以上例中已知A事件发生了,用柏努力公式可以求得是B因素造成的概率是多大,C因素,D因素同样也求.古典概型P(A)=A包含的基本事件数/基本事件总数几何概型P(A)=A面积/总的面积条件概率P(A|B)=Nab/Nb=P(AB)/P(B)=AB包含的基本事件数/B包含的基本事件数概率的性质性质1.P(Φ)=0.性质2(有限可加性).当n个事件A1,…,An两两互不相容时:P(A1∪...∪An)=P(A1)+...+P(An).性质3.对于任意一个事件A:P(A)=1-P(非A).性质4.当事件A,B满足A包含于B时:P(BnA)=P(B)-P(A),P(A)≤P(B).性质5.对于任意一个事件A,P(A)≤1.性质6.对任意两个事件A和B,P(B-A)=P(B)-P(AB).性质7(加法公式).对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B)编辑本段几何公理线角1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补三角形(三角形具有稳定性)15定理三角形任意两边的和大于第三边16推论三角形任意两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等24边边边公理(sss)有三边对应相等的两个三角形全等25斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等26定理1在角的平分线上的点到这个角的两边的距离相等27定理2到一个角的两边的距离相同的点,在这个角的平分线上28角的平分线是到角的两边距离相等的所有点的集合29等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)30推论1等腰三角形顶角的平分线平分底边并且垂直于底边31等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合32推论3等边三角形的各角都相等,并且每一个角都等于60°33等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)34推论1三个角都相等的三角形是等边三角形35推论2有一个角等于60°的等腰三角形是等边三角形36在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半37直角三角形斜边上的中线等于斜边上的一半38定理线段垂直平分线上的点和这条线段两个端点的距离相等39逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上40线段的垂直平分线可看作和线段两端点距离相等的所有点的集合41定理1关于某条直线对称的两个图形是全等形42定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上43逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称44勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^245勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形四边形(四边形具有不稳定性)46定理四边形的内角和等于360°47四边形的外角和等于360°48多边形内角和定理n边形的内角的和等于(n-2)×180°49推论任意多边的外角和等于360°50平行四边形性质定理1平行四边形的对角相等51平行四边形性质定理2平行四边形的对边相等52推论夹在两条平行线间的平行线段相等53平行四边形性质定理3平行四边形的对角线互相平分54平行四边形判定定理1两组对角分别相等的四边形是平行四边形55平行四边形判定定理2两组对边分别相等的四边形是平行四边形56平行四边形判定定理3对角线互相平分的四边形是平行四边形57平行四边形判定定理4一组对边平行相等的四边形是平行四边形58矩形性质定理1矩形的四个角都是直角59矩形性质定理2矩形的对角线相等60矩形判定定理1有三个角是直角的四边形是矩形61矩形判定定理2对角线相等的平行四边形是矩形62菱形性质定理1菱形的四条边都相等63菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角64菱形面积=对角线乘积的一半,即s=(a×b)÷265菱形判定定理1四边都相等的四边形是菱形66菱形判定定理2对角线互相垂直的平行四边形是菱形67正方形性质定理1正方形的四个角都是直角,四条边都相等68正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角69定理1关于中心对称的两个图形是全等的70定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分71逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称72等腰梯形性质定理等腰梯形在同一底上的两个角相等73等腰梯形的两条对角线相等74等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形75对角线相等的梯形是等腰梯形76平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等77推论1经过梯形一腰的中点与底平行的直线,必平分另一腰78推论2经过三角形一边的中点与另一边平行的直线,必平分第三边79三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半80梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=l×h81(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d82(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例85推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例86定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边87平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例88定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似89相似三角形判定定理1两角对应相等,两三角形相似(asa)90直角三角形被斜边上的高分成的两个直角三角形和原三角形相似91判定定理2两边对应成比例且夹角相等,两三角形相似(sas)92判定定理3三边对应成比例,两三角形相似(sss)93定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似94性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比95性质定理2相似三角形周长的比等于相似比96性质定理3相似三角形面积的比等于相似比的平方97任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值98任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆99圆是定点的距离等于定长的点的集合100圆的内部可以看作是圆心的距离小于半径的点的集合101圆的外部可以看作是圆心的距离大于半径的点的集合103同圆或等圆的半径相等104到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆105和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线106到已知角的两边距离相等的点的轨迹,是这个角的平分线107到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线108定理不在同一直线上的三点确定一个圆。109垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧110推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧111推论2圆的两条平行弦所夹的弧相等112圆是以圆心为对称中心的中心对称图形113定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等114推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等115定理一条弧所对的圆周角等于它所对的圆心角的一半116推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等117推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径118推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形119定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角120①直线l和⊙o相交d﹤r②直线l和⊙o相切d=r③直线l和⊙o相离d﹥r121切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线122切线的性质定理圆的切线垂直于经过切点的半径123推论1经过圆心且垂直于切线的直线必经过切点124推论2经过切点且垂直于切线的直线必经过圆心125切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角126圆的外切四边形的两组对边的和相等127弦切角定理弦切角等于它所夹的弧对的圆周角128推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等129相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等130推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项131切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项132推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等133如果两个圆相切,那么切点一定在连心线上134①两圆外离d﹥r+r②两圆外切d=r+r③两圆相交r-r﹤d﹤r+r(r﹥r)④两圆内切d=r-r(r﹥r)⑤两圆内含d﹤r-r(r﹥r)135定理相交两圆的连心线垂直平分两圆的公共弦136定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形137定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆138正n边形的每个内角都等于(n-2)×180°/n139定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形149正n边形的面积sn=pnrn/2p表示正n边形的周长141正三角形面积√3a²/4(a表示边长)142如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4143弧长计算公式:l=nπr/180144扇形面积公式:s扇形=nπr2/360=lr/2145内公切线长=d-(r-r)外公切线长=d-(r+r)146等腰三角形的两个底脚相等147等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合148如果一个三角形的两个角相等,那么这两个角所对的边也相等149三条边都相等的三角形叫做等边三角形150两边的平方的和等于第三边的三角形是直角三角形编辑本段数学归纳法(—)第一数学归纳法:一般地,证明一个与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值时命题成立;(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。(二)第二数学归纳法:第二数学归纳法原理是设有一个与自然数n有关的命题,如果:(1)当n=1回时,命题成立;(2)假设当n≤k时命题成立,则当n=k+1时,命题也成立。那么,命题对于一切自然数n来说都成立。(三)螺旋归纳法:螺旋归纳法是归纳法的一种变式,其结构如下:Pi和Qi是两组命题,如果:P1成立Pi成立=>Qi成立那么Pi,Qi对所有自然数i成立利用第一数学归纳法容易证明螺旋归纳法是正确的编辑本段排列,组合·阶乘:n!=1×2×3×……×n,(n为不小于0的整数)规定0!=1。·排列从n个不同元素中取m个元素的所有排列个数,A(n,m)=n!/(n-m)!(m是上标,n是下标,都是不小于0的整数,且m≤n)··组合从n个不同的元素里,每次取出m个元素,不管以怎样的顺序并成一组,均称为组合。所有不同组合的种数C(n,m)=A(n,m)/m!=n!/[m!·(n-m)!](m是上标,n是下标,都是不小于0的整数,且m≤n)◆组合数的性质:C(n,k)=C(n,k-1)+C(n-1,k-1);对组合数C(n,k),将n,k分别化为二进制,若某二进制位对应的n为0,而k为1,则C(n,k)为偶数;否则为奇数◆整次数二项式定理(binomialtheorem)(a+b)^n=C(n,0)×a^n×b^0+C(n,1)×a^(n-1)×b+C(n,2)×a^(n-2)×b^2+...+C(n,n)×a^0×b^n所以,有C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=C(n,0)×1^n+C(n,1)×1^(n-1)×1+C(n,2)×1^(n-2)×1^2+...+C(n,n)×1^n=(1+1)^n=2^n编辑本段微积分学极限的定义:设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。|<δ时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε那么常数A就叫做函数f(x)当x→x。时的极限几个常用数列的极限:an=c常数列极限为can=1/n极限为0an=x^n绝对值x小于1极限为0导数:定义:f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x=dy/dx几种常见函数的导数公式:①C'=0(C为常数函数);②(x^n)'=nx^(n-1)(n∈Q);③(sinx)'=cosx;④(cosx)'=-sinx;⑤(e^x)'=e^x;⑥(a^x)'=(a^x)*Ina(ln为自然对数)⑦(Inx)'=1/x(ln为自然对数X>0)⑧(logax)'=1/(xlna),(a>0且a不等于1)⑨(sinh(x))'=cosh(x)⑩(cosh(x))'=sinh(x)(tanh(x))'=sech^2(x)(coth(x))'=-csch^2(x)(sech(x))'=-sech(x)tanh(x)(csch(x))'=-csch(x)coth(x)(arcsinh(x))'=1/sqrt(x^2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度摄影师与摄影棚运营方居间合同2篇
- 二零二五版社区配送订餐服务合同范本与社区管理协议3篇
- 二零二五年度酒店地毯绿色生产与环保认证合同3篇
- 二零二五年新能源充电桩建设运营合同样本3篇
- 二零二五版高端住宅项目全程代理销售合同3篇
- 二零二五版基因合成与生物技术知识产权转让合同3篇
- 二零二五版10月大型设备运输委托合同2篇
- 二零二五版广西事业单位聘用示范性合同模板12篇
- 2025年度出口货物环保认证服务合同3篇
- 二零二五年度腻子材料国际贸易代理合同2篇
- 纳米技术增强早期疾病生物标志物的检测
- 产品销量分析表折线图excel模板
- 办公设备(电脑、一体机、投影机等)采购 投标方案(技术方案)
- 【真题】2023年南京市中考语文试卷(含答案解析)
- 功率模块可靠性寿命评估与预测
- 案卷评查培训课件模板
- 湘教版七年级地理第一学期期末试卷分析
- 上海春季高考英语真题试题word精校版(含答案)
- “数”我精彩-“学”有特色-小学六年级数学寒假特色作业展示
- 牛津译林版八年级上册英语8A期末复习-阅读理解(含答案)
- 普通高等新郎接亲试卷(2022全国卷)
评论
0/150
提交评论