山东省青岛五校联考2023年八上数学期末教学质量检测试题含解析_第1页
山东省青岛五校联考2023年八上数学期末教学质量检测试题含解析_第2页
山东省青岛五校联考2023年八上数学期末教学质量检测试题含解析_第3页
山东省青岛五校联考2023年八上数学期末教学质量检测试题含解析_第4页
山东省青岛五校联考2023年八上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛五校联考2023年八上数学期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若把代数式化为的形式(其中、为常数),则的值为()A. B. C.4 D.22.小明和小亮同时从学校出发到新华书店去买书,学校和书店相距7500米,小明骑自行车的速度是小亮步行速度的1.2倍,小明比小亮早15分钟到书店,设小亮速度是千米/小时,根椐题意可列方程是()A. B. C. D.3.若分式的值为0,则的值等于()A.0 B.2 C.3 D.-34.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用表示,左下角方子的位置用表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是A. B. C. D.5.如图是根据某校学生的血型绘制的扇形统计图,该校血型为型的有人,那么该校血型为型的人数为()A. B. C. D.6.已知三角形的两边长分别是3、5,则第三边a的取值范围是()A. B.2≤a≤8 C. D.7.下列各式计算结果是的是()A. B. C. D.8.如图,在四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连结BE,且BE也平分∠ABC,则以下的命题中正确的个数是()①BC+AD=AB;②E为CD中点③∠AEB=90°;④S△ABE=S四边形ABCDA.1 B.2 C.3 D.49.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:①,两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④当甲、乙两车相距千米时,或其中正确的结论有()A.个 B.个 C.个 D.个10.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁11.下列能用平方差公式计算的是().A. B.C. D.12.下面计算正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥CD,OE∥BC交CD于E,若OC=4,CE=3,则BC的长是____.14.如图,在△ABC中,∠ACB=90°,AB的垂直平分线DE交AB于E,交AC于D,∠DBC=30°,BD=4.6,则D到AB的距离为.15.如图,在△ABC中,PH是AC的垂直平分线,AH=3,△ABP的周长为11,则△ABC的周长为_____.16.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为_____________________.17.如图,网格纸上每个小正方形的边长为1,点,点均在格点上,点为轴上任意一点,则=____________;周长的最小值为_______________.18.如图,在若中,是边上的高,是平分线.若则=_____三、解答题(共78分)19.(8分)(1)计算:;(2)因式分解:3mx2-3my2.20.(8分)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线DE经过点C,过A作AD⊥DE于点D,过B作BE⊥DE于点E,则△BEC≌△CDA,我们称这种全等模型为“K型全等”.(不需要证明)(模型应用)若一次函数y=kx+4(k≠0)的图像与x轴、y轴分别交于A、B两点.(1)如图2,当k=-1时,若点B到经过原点的直线l的距离BE的长为3,求点A到直线l的距离AD的长;(2)如图3,当k=-时,点M在第一象限内,若△ABM是等腰直角三角形,求点M的坐标;(3)当k的取值变化时,点A随之在x轴上运动,将线段BA绕点B逆时针旋转90°得到BQ,连接OQ,求OQ长的最小值.21.(8分)如图,△ABC三个顶点的坐标分别为A(3,4),B(1,2),C(5,1),(1)请画出△ABC关于y轴对称的图形△A1B1C1,(2)△A1B1C1三个顶点坐标分别为A1,B1,C122.(10分)如图1,两个不全等的等腰直角三角形和叠放在一起,并且有公共的直角顶点.(1)在图1中,你发现线段的数量关系是______.直线相交成_____度角.(2)将图1中绕点顺时针旋转90°,连接得到图2,这时(1)中的两个结论是否成立?请作出判断说明理由.23.(10分)解不等式组:,并把它的解集在数轴上表示出来.24.(10分)如图,已知△ABC的三个顶点的坐标分别为A(-5,0)、B(-2,3)、C(-1,0).(1)画出△ABC关于原点O成中心对称的图形△A′B′C′;(2)将△ABC绕原点O顺时针旋转90°,画出对应的△A″B″C″,并写出点B″的坐标.25.(12分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长26.在平面直角坐标系中,O为原点,点A(2,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据完全平方式配方求出m和k的值即可.【详解】由题知,则m=1,k=-3,则m+k=-2,故选B.【点睛】本题是对完全平方公式的考查,熟练掌握完全平方公式是解决本题的关键.2、D【分析】由题意设小亮速度是千米/小时,根椐题意小明比小亮早15分钟到书店列出方程即可.【详解】解:由小明比小亮早15分钟到书店可得小亮的行程时间减去小明的行程时间等于小时,所以列出方程为.故选:D.【点睛】本题考查由实际问题抽象出分式方程,解题的关键是根据题干数量关系列出分式方程.3、B【解析】分式的值为0,分子为0分母不为0,由此可得x-2=0且x+3≠0,解得x=2,故选B.4、B【解析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义确定放的位置.【详解】解:棋盘中心方子的位置用表示,则这点所在的横线是x轴,左下角方子的位置用,则这点向右两个单位所在的纵线是y轴,则小莹将第4枚圆子放的位置是时构成轴对称图形.故选:B.【点睛】本题考查了轴对称图形和坐标位置的确定,正确确定x轴、y轴的位置是关键.5、B【分析】根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB型血所对应的百分比即可求解.【详解】∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.6、A【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和.解答:解:5-3<a<5+3,∴2<a<1.故选A.点评:已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.7、B【分析】根据同底数幂相乘,幂的乘方,同底数幂相除及合并同类项的知识解答即可.【详解】,故A错误;,故B正确;,故C错误;与不是同类项,无法合并,故D错误.故选:B【点睛】本题考查的是同底数幂相乘,幂的乘方,同底数幂相除及合并同类项,掌握各运算的法则是关键.8、D【分析】在AB上截取AF=AD.证明△AED≌△AEF,△BEC≌△BEF.可证4个结论都正确.【详解】解:在AB上截取AF=AD.则△AED≌△AEF(SAS).∴∠AFE=∠D.∵AD∥BC,∴∠D+∠C=180°.∴∠C=∠BFE.∴△BEC≌△BEF(AAS).∴①BC=BF,故AB=BC+AD;②CE=EF=ED,即E是CD中点;③∠AEB=∠AEF+∠BEF=∠DEF+∠CEF=×180°=90°;④S△AEF=S△AED,S△BEF=S△BEC,∴S△AEB=S四边形BCEF+S四边形EFAD=S四边形ABCD.故选D.【点睛】此题考查全等三角形的判定与性质,运用了截取法构造全等三角形解决问题,难度中等.9、C【分析】由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t,可得出答案.【详解】图象可知、两城市之间的距离为,甲行驶的时间为小时,而乙是在甲出发小时后出发的,且用时小时,即比甲早到小时,故①②都正确;设甲车离开城的距离与的关系式为,把代入可求得,,设乙车离开城的距离与的关系式为,把和代入可得,解得,,令可得:,解得,即甲、乙两直线的交点横坐标为,此时乙出发时间为小时,即乙车出发小时后追上甲车,故③正确;令,可得,即,当时,可解得,当时,可解得,又当时,,此时乙还没出发,当时,乙到达城,;综上可知当的值为或或或时,两车相距千米,故④不正确;综上可知正确的有①②③共三个,故选:C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.10、D【解析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.11、B【分析】根据平方差公式的特点即可求解.【详解】A.=,不符合题意;B.=,符合题意;C.=,不能使用平方差公式,故错误;D.不能使用平方差公式,故错误;故选B.【点睛】此题主要考查平方差公式,解题的关键是熟知平方差公式适用的特点.12、C【解析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=,错误;B.原式=,错误;C.原式=,正确;D.原式=,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.二、填空题(每题4分,共24分)13、1.【分析】首先利用三角形的中位线定理求得CD的长,然后利用勾股定理求得AD的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC.∵OE∥BC,∴OE∥AD,∴OE是△ACD的中位线.∵CE=3cm,∴DC=2OE=2×3=2.∵CO=4,∴AC=3.∵AC⊥CD,∴AD1,∴BC=AD=1.故答案为:1.【点睛】考查了平行四边形的性质,三角形中位线定理,勾股定理,正确的理解平行四边形的性质是解答本题的关键,难度不大.14、2.1【解析】先根据线段的垂直平分线的性质得到DB=DA,则有∠A=∠ABD,而∠C=90°,∠DBC=10°,利用三角形的内角和可得∠A+∠ABD=90°-10°=60°,得到∠ABD=10°,在Rt△BED中根据含10°的直角三角形三边的关系即可得到DE=BD=2.1cm.解:∵DE垂直平分AB,∴DB=DA,∴∠A=∠ABD,而∠C=90°,∠DBC=10°,∴∠A+∠ABD=90°-10°=60°,∴∠ABD=10°,在Rt△BED中,∠EBD=10°,BD=4.6cm,∴DE=BD=2.1cm,即D到AB的距离为2.1cm.故答案为2.1.15、1【分析】根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案.【详解】解:是的垂直平分线,,,的周长为11,,的周长,故答案为:1.【点睛】本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16、【分析】由直角三角形的中线,求出DE的长度,利用三角形中位线定理和勾股定理,求出BE的长度,即可求出答案.【详解】解:∵四边形ABCD是正方形,

∴∠DCE=90°,OD=OB,

∵DF=FE,

∴CF=FE=FD,

∵EC+EF+CF=18,EC=5,

∴EF+FC=13,∴DE=13,

∴DC=,

∴BC=CD=12,

∴BE=BC-EC=7,

∵OD=OB,DF=FE,

∴OF=BE=;故答案为:.【点睛】本题考查正方形的性质,三角形的中位线定理,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17、+【分析】根据勾股定理可计算出AC的长,再找出点A关于x轴对称点,利用两点之间线段最短得出△PAC周长最小值.【详解】解:如图,AC==,作点A关于x轴对称的点A1,再连接A1C,此时与x轴的交点即为点P,此时A1C的长即为AP+CP的最小值,A1C==,∴△PAC周长的最小值为:A1C+AC=+.故答案为:,+.【点睛】本题考查了作图-轴对称变换、最短路线问题,解决本题的关键是正确得出对应点位置.18、【分析】根据直角三角形内角和定理求出∠BAC,根据角平分线的定义求出∠BAE,结合图形计算即可.【详解】∵∴∵是平分线∴∵是边上的高,∴∴故答案为:.【点睛】本题考查了三角形的角度问题,掌握直角三角形内角和定理和角平分线的定义是解题的关键.三、解答题(共78分)19、(1);(2)3m(x+y)(x-y);【分析】(1)先根据整数指数幂的运算法则计算,再根据有理数的加减运算即可;(2)先提公因式3m,再利用平方差公式因式分解即可.【详解】解:(1)=1+(-2)-=;(2)3mx2-3my2=3m(x2-y2)=3m(x+y)(x-y).【点睛】本题考查了整数指数幂的运算以及因式分解,掌握基本运算法则和公式是解题的关键.20、(1);(2)点M的坐标为(7,3)或(1,7)或(,);(3)OQ的最小值为1.【分析】(1)先求出A、B两点的坐标,根据勾股定理即可求出OE的长,然后利用AAS证出△ADO≌△OEB,即可求出AD的长;(2)先求出A、B两点的坐标,根据等腰直角三角形的直角顶点分类讨论,分别画出对应的图形,利用AAS证出对应的全等三角形即可分别求出点M的坐标;(3)根据k的取值范围分类讨论,分别画出对应的图形,设点A的坐标为(x,0),证出对应的全等三角形,利用勾股定理得出OQ2与x的函数关系式,利用平方的非负性从而求出OQ的最值.【详解】解:(1)根据题意可知:直线AB的解析式为y=-x+1当x=0时,y=1;当y=0时,x=1∴点A的坐标为(1,0)点B的坐标为(0,1)∴OA=BO=1根据勾股定理:OE=∵∠ADO=∠OEB=∠AOB=90°∴∠AOD+∠OAD=90°,∠AOD+∠BOE=90°∴∠OAD=∠BOE在△ADO和△OEB中∴△ADO≌△OEB∴AD=OE=(2)由题意可知:直线AB的解析式为y=x+1当x=0时,y=1;当y=0时,x=3∴点A的坐标为(3,0)点B的坐标为(0,1)∴OA=3,BO=1①当△ABM是以∠BAM为直角顶点的等腰直角三角形时,AM=AB,过点M作MN⊥x轴于N∵∠MNA=∠AOB=∠BAM=90°∴∠MAN+∠AMN=90°,∠MAN+∠BAO=90°∴∠AMN=∠BAO在△AMN和△BAO中∴△AMN≌△BAO∴AN=BO=1,MN=AO=3∴ON=OA+AN=7∴此时点M的坐标为(7,3);②当△ABM是以∠ABM为直角顶点的等腰直角三角形时,BM=AB,过点M作MN⊥y轴于N∵∠MNB=∠BOA=∠ABM=90°∴∠MBN+∠BMN=90°,∠MBN+∠ABO=90°∴∠BMN=∠ABO在△BMN和△ABO中∴△BMN≌△ABO∴BN=AO=3,MN=BO=1∴ON=OB+BN=7∴此时点M的坐标为(1,7);③当△ABM是以∠AMB为直角顶点的等腰直角三角形时,MA=MB,过点M作MN⊥x轴于N,MD⊥y轴于D,设点M的坐标为(x,y)∴MD=ON=x,MN=OD=y,∠MNA=∠MDB=∠BMA=∠DMN=90°∴BD=OB-OD=1-y,AN=ON-OA=x-3,∠AMN+∠DMA=90°,∠BMD+∠DMA=90°∴∠AMN=∠BMD在△AMN和△BMD中∴△AMN≌△BMD∴MN=MD,AN=BD∴x=y,x-3=1-y解得:x=y=∴此时M点的坐标为(,)综上所述:点M的坐标为(7,3)或(1,7)或(,).(3)①当k<0时,如图所示,过点Q作QN⊥y轴,设点A的坐标为(x,0)该直线与x轴交于正半轴,故x>0∴OB=1,OA=x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN+∠BQN=90°,∠QBN+∠ABO=90°∴∠BQN=∠ABO在△BQN和△ABO中∴△BQN≌△ABO∴QN=OB=1,BN=OA=x∴ON=OB+BN=1+x在Rt△OQN中,OQ2=ON2+QN2=(1+x)2+12=(x+1)2+16,其中x>0∴OQ2=(x+1)2+16>16②当k>0时,如图所示,过点Q作QN⊥y轴,设点A的坐标为(x,0)该直线与x轴交于负半轴,故x<0∴OB=1,OA=-x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN+∠BQN=90°,∠QBN+∠ABO=90°∴∠BQN=∠ABO在△BQN和△ABO中∴△BQN≌△ABO∴QN=OB=1,BN=OA=-x∴ON=OB-BN=1+x在Rt△OQN中,OQ2=ON2+QN2=(1+x)2+12=(x+1)2+16,其中x<0∴OQ2=(x+1)2+16≥16(当x=-1时,取等号)综上所述:OQ2的最小值为16∴OQ的最小值为1.【点睛】此题考查是一次函数与图形的综合大题,难度系数较大,掌握全等三角形的判定及性质、等腰三角形的性质、勾股定理、平方的非负性和分类讨论的数学思想是解决此题的关键.21、(1)见解析;(2)【分析】(1)根据题意,找出对应的对称坐标,即可画出;(2)由对称图形可知,其对应坐标.【详解】(1)如图所示:(2)由对称性,得A1,B1,C1.【点睛】此题主要考查轴对称图形的画法与坐标求解,熟练掌握,即可解题.22、(1)AC=BD,直线相交成90°;(2)结论成立,详见解析.【分析】(1)由图可知线段AC,BD相等,且直线AC,BD相交成90°角.(2)以上关系仍成立.延长CA交BD于点E,根据勾股定理可证得AC=BD,即可证明△AOC≌△BOD,根据两全等三角形对应角的关系,即可证明CE⊥BD.【详解】(1)因为∆和△是等腰直角三角形,所以OC=OD,OA=OB,∠O=90°所以OC-OA=OD-OB,所以AC=BD,直线相交成90°;

(2)(1)中的两个结论仍然成立,理由如下:

∵∆和∆OCD都是等腰直角三角形

∴OA=OB,OC=OD,∠COD=∠AOB=90°∴△AOC≌△BOD

∴AC=BD,∠ACO=∠BDO

延长CA交BD于点E.

∵∠DBO+∠B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论