内燃机构造课件_第1页
内燃机构造课件_第2页
内燃机构造课件_第3页
内燃机构造课件_第4页
内燃机构造课件_第5页
已阅读5页,还剩367页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

发动机点火系

第一节发动机点火系概说一、汽油机的点火机理在火花塞电极间加上高电压后,电极间的气体便发生电离现象,所加电压愈高,气体电离的程度愈高。当电压增高到一定值时,火花塞两极间的间隙被击穿而产生电火花。使火花塞两电极之间产生电火花所需要的最低电压,称为击穿电压。当火花塞间隙为0.5~1.0mm时,发动机冷起动时所需击穿电压约7000~8000V,实际工作电压一般在10000~15000V。

击穿电压的高低与两电极之间的距离(火花塞间隙)、气缸内压力和温度的大小有关。火花塞间隙愈大,气缸内气体压力愈高,温度愈低时,则击穿电压愈高。

击穿电压的高低与火花塞间隙内的可燃混合气浓度也有关,气缸内稀薄混合气难以点燃。为了提高汽油机压缩比,希望点燃稀薄可燃混合气,但应保证火花塞间隙内混合气浓度较浓,离开火花塞距离愈远,混合气浓度愈稀,这样,既保证了正常的火焰传播速率,又能使气缸内总体空间平均的混合气浓度较为稀薄,远远超过了火焰传播上限(分层充气进气方式)。二、汽油机点火系1、定义—能够按时在火花塞电极间产生电火花的全部设备,称为发动机点火系。2、要求—按照发动机各缸的点火次序,在一定的时刻供给火花塞以能量足够的高压电,使火花塞两电极之间产生足够强的电火花,点燃被压缩的可燃混合气,从而使发动机作功。3、分类—按照点火系的组成及产生高压电的方法不同,分为蓄电池点火系、半导体点火系、磁电机点火系和微机控制点火系。本章只介绍传统汽车蓄电池点火系的工作原理及组成,磁电机点火系应用在摩托车发动机中,半导体点火系及微机控制点火系内容及电源、起动电机等其它电器知识在以后的《汽车电器及电子控制技术》课程中介绍。4、蓄电池点火系—由蓄电池或发电机供给12V或24V的低压直流电,借点火线圈和断电器将低压电转变为高压电,再通过配电器分配到各缸火花塞,使两电极之间产生火花,点燃可燃混合气。汽车一般为12V电源,由蓄电池供给低压直流电,发电机给蓄电池充电。5、搭铁—汽车发动机点火系线路与其它电器设备线路一样,均采用单线制联结,即电源的一个电极用导线与各用电设备相联,而另一个电极则通过发动机机体、汽车车架和车身与各用电设备相联,称为搭铁,相当于接地。既可以以电源的负极搭铁,也可以以电源的正极搭铁,汽车发动机点火系一般以电源的负极搭铁。此时点火线圈的线路一般使火花塞的中心电极为负极,侧电极为正极,由于电子容易从温度高的中心电极向温度低的侧电极发射(高压电流方向从正极流向负极),因此,可降低击穿电压15~20%左右。第一节蓄电池点火系的组成与工作原理一、组成二、工作原理点火线圈和断电器共同完成低压电转变为高压电的作用。点火线圈由初级绕组和次级绕组组成,相当于变压器的作用。点火开关闭合时,蓄电池点火系才能工作。当断电器触点组闭合时,低压电路导通,初级绕组通以初级电流,产生磁场,由于铁芯3的作用而加强磁场。当断电器凸轮7顶开触点臂8而使触点组分开时,低压电路断开,初级电流为零,这样,由于初级绕组中电流的变化引起磁通量的变化,从而在线圈较密的次级绕组中产生很高的感应电动势,使火花塞两电极间隙处的气体被击穿,产生火花。

点火线圈次级绕组中的感应电压称为次极电压,其中通过的电流称为次极电流,相应的电路称为次极电路或高压电路。断电器触点刚断开时,次极电压达到峰值,称为发火电压。随后迅速衰减。次极电压波形应保证必要的火花持续时间,此期间内的次极电压波形大于击穿电压(又叫穿透电压或火花电压)。断电器触点闭合时,初级电流并不立即达到欧姆定律所指的稳定值(I=V/R),而是经过一定时间后才能达到。因此,初级电流的高低与断电器触点的闭合时间有关。蓄电池点火系发动机转速愈高,次极电压愈低,就是因为转速升高后,断电器触点闭合时间缩短,初级电流减小,导致初始磁通量减小,断电器触点断开时引起的磁通量变化率减小,次级绕组中产生的感应电动势降低。断电器触点旁一般并联一只电容器,其作用是消除自感电流的不利影响。当断电器触点分开时,自感电流向电容器充电,加速初级电流和磁通的衰减,并且减小了触点间的火花,避免触点烧蚀;当断电器触点闭合时,电容器放电,初级电流增大。即作用是消除自感电流不利影响,提高次极电压;避免触点烧蚀。三、多缸发动机蓄电池点火系工作原理断电器凸轮由配气凸轮轴驱动,曲轴每旋转2周,断电器凸轮转1周,各缸发火一次,因此,断电器凸轮的凸棱数等于发动机的气缸数。汽车发动机一般只有一个点火线圈,因此次极绕组的接头应按各缸发火次序依次与各缸火花塞的中心电极接通,这是由配电器上的分电器盖(中心电极与次极绕组接通,与气缸数相等的侧电极与各缸火花塞中心电极接通)与分火头实现的。四、如何解决蓄电池点火系高、低速之间的矛盾?发动机低速运转时,初级电流大,次极电压高,点火可靠;发动机高速运转时,初级电流小,次极电压低,容易失火。如果点火线圈按高速时设计,低速时初级电流过大,线圈初级绕组易过热;反之,按低速时设计,高速时易失火,点火不可靠。解决的办法是在低压电路中串联一个附加电阻,其电阻值随工作温度高低而变化(温度愈高,电阻值愈大),从而满足高低速时的初级电流大小的要求。起动时,起动电机工作使蓄电池端电压急剧下降,初级电流大幅度减小,次级电压降低,起动后,起动电机不再工作,初级电流恢复,次级电压升高。为使起动时点火可靠,如图所示,起动时起动继电器触点8闭合,起动机电磁开关的线圈通电,电磁开关触盘7接通附加电阻短路接线柱6,附加电阻短路初级电流增大,次级电压升高。第二节点火提前

最佳点火提前角随发动机转速和负荷(节气门开度表示)的变化而变化。当节气门开度一定时,发动机转速升高,燃烧过程所占曲轴转角增大,最佳点火提前角增大。否则,后燃损失增加,发动机功率和燃油经济性下降。当发动机转速一定时,随着节气门开度增大,最佳点火提前角应适当减小。因为,节气门开度增大时,气缸内废气稀释现象减轻,混合气浓度增加,而且,进入气缸内的可燃混合气增多,压缩终了时的压力和温度增高,均使发动机爆燃倾向增加,应适当推迟点火提前角,避免爆震现象的发生。

蓄电池点火系中一般都设有两套自动调节点火提前角的装置。一套是离心式点火提前调节装置,一套是真空式点火提前调节装置。一、分电器由断电器、配电器,电容器以及点火提前调节装置组成。其作用是在发动机工作时接通与切断点火系统的初级电路,使点火线圈的次级绕组中产生高电压,并按发动机要求的点火时刻与点火次序,将点火线圈产生的高压电分配到相应气缸的火花塞上。第三节蓄电池点火系主要元件1、断电器断电器的作用是周期性地接通和断开初级电路,使初级电流发生变化,以便在点火线圈中感应产生较高的次极电压。一对钨质的触点,固定触点固定于托板3上,活动触点固定在触点臂4的一端。触点臂的另一端有孔,套在销钉5上,触点臂可绕销钉5自由转动。在触点臂中部固定有夹布胶木的顶块,片簧6的弹力使活动触点臂4上的夹布胶木顶块压紧在断电器凸轮上。凸轮棱数等于气缸数,凸轮轴转速与配气凸轮轴转速相等。

两触点分开时的最大间隙称为触点间隙,一般规定为0.35~0.45mm。触点间隙过小,触点间易出现火花而使初级电路断电不良,甚至触点烧蚀;触点间隙过大,则触点闭合时间缩短,使初级电流减小,次级电压降低,高速时容易缺火。可旋转偏心调节螺钉1来调整触点间隙,首先,要松开固定托板3的螺钉2。2、配电器配电器的作用是将点火线圈中产生的高压电,按照发动机的工作次序轮流分配给各气缸的火花塞上。主要由胶木制成的分电器盖1和分火头2组成。分火头套在断电器凸轮的延伸端,此延伸端侧面有一平面,借此保证分火头与凸轮同步旋转。

分电器盖中央插孔装有炭精制成的中心触头,弹簧始终使其与分火头顶部的铜片接触。分电器盖外围有与气缸数目相等的侧插孔,各嵌有铜套作为侧电极,在分火头旋转时导电片依次与个侧电极接通。分电器盖中心插孔与点火线圈次级电路接通,分电器侧插孔按发动机各缸发火次序依次与各缸火花塞中心电极接通。3、点火提前调节装置实现点火提前角调节的方法有两种:(1)触点不动,使凸轮相对于其轴顺旋转方向转过一个角度

,如图9-9b所示。这样,在活塞尚未到达上止点时(假定点火提前角调节装置不工作时,点火提前角为零)断电器触点即分开,使点火提前。(2)凸轮不动,使触点(连同固定托板)相对于凸轮逆旋转方向转过一个角度

,使点火也提前。

当托板随分电器轴旋转时,重块的离心力使小头端克服弹簧3和9的拉力而绕大头端的轴销6转过一个角度,通过销钉5带动轴套11,使断电器凸轮1顺旋转方向转过这个角度,点火提前。(1)离心式点火提前装置它是随着发动机转速的变化改变凸轮和轴的相位关系而调节点火提前角的。托板7固定在分电器轴8上,重块4和10的大头端分别套在托板的两个轴销6上,两个重块的小头端与托板之间弹簧连接。

与断电器凸轮1制成一体的轴套11空套在分电器轴8的上部,轴套的下端面有带腰形孔的拨板2,套在重块4和10上的销钉5上。(2)真空式点火提前装置它是随着发动机负荷(节气门开度)的变化改变触点与凸轮的相位关系而调节点火提前角的。真空式点火提前装置3固定在分电器外壳1的侧面,其内腔被膜片7分割成两个腔,左室通大气,右室为真空室,借真空软管5接到节气门旁的专用通气孔上。膜片与拉杆8连接成一体,拉杆与断电器底板连接;右室中安装弹簧4。当节气门开度增大时,膜片右室感受到的进气管真空度减小,弹簧力迫使膜片左移,推动断电器底板顺转动方向转动,点火推迟。反之,当节气门开度减小时,膜片右移,点火提前。但当节气门开度处于怠速位置时,通气孔在节气门前方,膜片右室真空度为零,点火提前角减至最小或为零。二、火花塞

火花塞的功用是将点火线圈的脉冲高压电引入燃烧室,并在两个电极之间产生电火花,以点燃可燃混合气。高压电经接线螺柱1、接线螺杆3引到中心电极11,中心电极与接线螺杆之间有密封剂6,防止气体泄漏;侧电极9焊接在火花塞外壳5上搭铁,陶瓷绝缘体2固定于之间,有紫铜垫圈8以及密封垫圈4防止气体泄漏;火花塞外壳5与气缸盖之间有密封垫圈7防止气体泄漏。火花塞绝缘体紫铜垫圈8以下的锥形部分10称为火花塞的绝缘体裙部,是吸热部分,所吸收的高温热量经与外壳5接触的紫铜垫圈4传递给气缸盖。当火花塞绝缘体裙部工作温度达到500~600C时,落在裙部的油粒能完全烧尽,此温度称为火花塞的自净温度;若低于此温度,则容易产生积碳,使火花塞裙部绝缘性能下降,使点火不可靠(裙部发黑);当温度高达800~900C时,可能产生灼热表面点火(裙部发灰白色)。2、火花塞间隙:中心电极与侧电极之间的间隙。传统发动机一般0.6~0.8mm。3、火花塞间隙为什么不能过大或过小?答:间隙过小,则火花微弱,并且容易产生积碳而漏电;间隙过大,所需击穿电压增高,发动机不易起动,而且在高速时容易发生“缺火”现象。1、火花塞分类及选择依据:火花塞分类按绝缘体长度A可分为冷型(短)、普通型(标准)、热型(长)火花塞,选择的依据则是视发动机压缩比的高低。对高压缩比的高速发动机,燃烧气体温度高,为防止绝缘体裙部过热,应采用裙部较短的冷型火花塞;对低压缩比、长期在低速运转的发动机,为避免裙部积碳,影响点火性能,应采用裙部较长的热型火花塞。三、点火线圈点火线圈是用来将电源的低电压转变为高压电的基本元件。常用的点火线圈分为开磁路点火线圈和闭磁路点火线圈。1、开磁路点火线圈:柱形铁心,次级绕组在内侧,初级绕组电流大,在外侧,以利于散热。一次绕组在铁心中产生的磁通,通过导磁钢套3形成磁回路,磁力线经过空气穿过,磁路的磁阻大,泄漏的磁通量多,即磁路损失大,转换效率低。2、闭磁路点火线圈:将一次绕组和二次绕组都绕在口子形或日子形铁心上,初级绕组在铁心中产生的磁通,通过铁心形成闭合磁路,因而泄漏的磁通量即磁路损失大大减小,点火线圈的转换效率高。

发动机冷却系

第一节冷却系的组成及水路一、冷却系的功用:使发动机在所有工况下都保持在适当的温度范围内,防止发动机过热或过冷,并且在发动机冷起动后使发动机迅速升温,尽可能缩短暖机时间。二、发动机为什么不能在过热或过冷条件下正常工作?发动机若过热,则其中运动机件将因高温膨胀而破坏正常配合间隙,或因润滑油在高温下失效而卡死;各机件因高温导致机械强度降低甚至损坏;发动机工作过程因高温导致吸气量减少甚至燃烧不正常而使发动机动力性、经济性指标下降等,因此发动机不可以在过热条件下工作。

发动机若过冷,则散热损失增加,对柴油机,机油粘度较大,摩擦功率损失较大,导致发动机动力性、经济性指标也降低;对汽油机,已汽化的燃油又凝结并流到曲轴箱,稀释了机油而影响润滑,结果也使发动机动力性、经济性指标下降,磨损加剧,因此,发动机也不可在过冷条件下工作。三、冷却系分类:

风冷和水冷两种,水冷却系一般指强制循环水冷系,汽车发动机就采用强制循环水冷却系统。水冷却系的最大优点是冷却强度高、发动机内部和外部冷却较均匀、冷却水路设计自由度大等,最大缺点是容易漏水,需要经常维修等。

强制循环水冷系由水泵11、散热器1、冷却风扇12、节温器10、补偿水桶3、发动机机体和气缸盖中的水套以及其它附属装置组成,如图7-1所示。四、强制循环水冷却系统的组成:

冷却水在强制循环水冷系中的流动如图7-2所示:

散热器底部经过冷却的冷却水经水泵加压,经过分水管进入发动机机体的冷却水套,吸热后向上流入气缸盖水套,再次吸热后经节温器主阀门通过出水软管进入散热器,对着散热器的冷却风扇加速流经散热器芯的空气,促使热水加速冷却,然后经进水软管被水泵有一定真空度的进水口吸入。第二节水冷却系主要部件的结构与工作原理一、水泵水泵的功用是对冷却水加压,加速冷却水在冷却系中的循环流动。一般采用离心式水泵,与冷却风扇同轴,并由风扇皮带轮带动旋转。

当水泵叶轮旋转时,水泵中的冷却水在离心力作用下被甩向叶轮边缘,同时产生一定的压力,压力升高的冷却水从壳体边缘出水管流出;在叶轮的中心处,由于压力下降形成真空,因此水泵的入水管设在此处。水泵的典型结构(EQ6100-1型发动机)如图7-10所示。

1-水泵外壳;2-叶轮;3-夹布胶木密封垫圈;6-水封皮碗;7-弹簧;8-衬垫;9-泵盖;10-水封座圈;11-球轴承;12-水泵轴;13-半圆键;14-凸缘盘;15-轴承卡环;16-隔离套筒;17-滑脂嘴;18-水封环;19-管接头。图7-10EQ6100-1型发动机离心式水泵7-11二、散热器1、散热器分纵流式和横流式两种,大多数轿车采用横流式,其主要组成部分分为上储水室和下储水室、散热器芯。上储水室顶部有加水口,用散热器盖盖住。2、散热器芯主要分两种:管片式和管带式。如图示。传统的散热器芯由黄铜制造,近年来更多的用铝制造,有些散热器的进出水室由复合塑料制造,大大减轻了重量。3、散热器盖在强制循环水冷系中很重要,首先,它要将水冷系密封住,以防冷却水溅出;其次,散热器盖具有空气-蒸汽阀的功用,当水冷系过热而使水蒸气多时,冷却系统压力过高,可能导致散热器芯涨破,此时散热器盖中的蒸汽阀打开,多余的水蒸气经溢流管流入补偿水桶;当水冷系过冷而使水蒸气凝结,冷却系统压力过低,可能导致散热器芯压瘪而破裂,此时散热器盖中的空气阀打开,冷空气补充入冷却系统。因此,散热器盖还使密封加压的水冷系压力稳定。

加压后的冷却系统压力可提高98~196kPa,系统中水的沸点可高达120ºc,从而扩大了散热器与周围空气的温差,提高了散热器的换热效率。三、节温器1、节温器是控制冷却水流动路径的阀门。其作用是根据冷却水温的高低,打开或关闭冷却水通向散热器的通道,调节冷却系统的冷却强度。2、节温器结构与工作原理

节温器分蜡式节温器与折叠式节温器两种。蜡式节温器又分单阀型与双阀型,如图7-16所示是东风EQ6100-1型发动机单阀型蜡式节温器结构示意图。推杆3的上端固定于支架1的中心处,下端插入胶管5的中心孔中。胶管与节温器外壳7之间形成的腔体内装满精致石蜡4。常温时,石蜡呈固态,弹簧8将主阀门2推向上方,使之压紧在阀座上,主阀门关闭,副阀门6上移而开启,来自发动机气缸盖出水口的冷却水,经水泵又流回气缸体水套中,进行小循环冷却方式。当发动机水温低于76ºc时,节温器主阀门关闭,副阀门打开,冷却水不流经散热器,只是在水套与水泵之间循环,称为发动机的小循环冷却方式,可加快冷起动后暖机过程。当发动机水温升高时,石蜡逐渐变成液态,其体积膨胀,迫使胶管压缩,而对推杆锥状端头产生向上举力,但推杆上端固定,因此其反作用力迫使胶管、节温器外壳向下移动,主阀门逐渐开大,副阀门逐渐关小。当发动机水温高于76ºc时,主阀门开启,水温超过86ºc时,主阀门完全打开,副阀门完全关闭。此时来自气缸盖出水口的冷却水沿出水管全部进入散热器,称为发动机的大循环冷却方式。折叠式节温器的结构与工作原理示意图如图所示。(支架7固定不动,阀座4、外壳9固定不动,黄铜制成的折叠式波纹筒内装有易挥发的乙醚,主阀门5与侧阀门2可随折叠式波纹筒的伸缩而上下移动)

一般水冷系的冷却水都是由机体流进,从气缸盖流出。大多数节温器布置在气缸盖出水管路中,如前所述。这种布置方式的优点是结构简单,容易排除水冷系中的气泡。其缺点是节温器在工作时会产生振荡现象。例如,在冬季起动发动机时,由于冷却水温度低,节温器关闭。冷却水在进行小循环时,温度很快升高,节温器开启。与此同时,散热器内的低温冷却水流入机体,使冷却水又冷了下来,节温器重新关闭,等到冷却水再度升高,节温器又再次打开,直到全部冷却水的温度稳定之后,节温器才趋于稳定不再反复开闭。这种现象称为节温器的振荡现象。当出现这种现象时,将增加汽车的燃油消耗量。

为避免节温器工作时的振荡现象,可以将节温器布置在散热器的出水管路中。这种布置方式可以减轻或消除节温器振荡想象,并能精确地控制冷却水温度,但其结构复杂,成本较高,多用于高性能的轿车发动机,如下图所示。暖风机发动机水泵节温器

节温器损坏(如节温器壳体破损)时会导致乙醚或石蜡漏失,发动机会因过热而开锅。此外,发动机过热的原因也可能是驱动水泵叶轮旋转的冷却风扇皮带出现打滑现象,造成水泵、冷却风扇的工作能力下降,需要经常调整。发动机因过热而开锅时,切不可将散热器盖马上打开补充冷却水,因为密封加压的强制循环水冷系的压力高于环境大气压力,冷却系中冷却水的沸点高于100ºc,如果立刻将高于100ºc的冷却系压力降低至环境大气压力,冷却系中的热水立即沸腾,大量的热蒸汽涌出会烫伤人。

发动机润滑系

第一节润滑系的功用及组成一、润滑系的功用在发动机工作时连续不断地将洁净润滑油输送至全部运动件的摩擦表面,形成油膜,实现液体润滑,从而减少摩擦阻力,降低功率消耗,减轻机件磨损,保证发动机工作可靠,提高耐久性。需要润滑的主要运动部件有:曲轴主轴颈与主轴承、曲柄销与连杆轴承、凸轮轴颈与凸轮轴轴承、活塞及活塞环与气缸壁面、配气机构各运动副及传动齿轮等。二、润滑方式:(1)压力润滑:是以一定的压力将润滑油供入摩擦表面的润滑方式。显然,压力润滑方式形成的油膜承载能力高,具有缓冲及分散应力的作用,一般在负荷较大、相对运动速度较高的转动摩擦副的摩擦表面上应用,如曲轴主轴颈与主轴承、曲柄销与连杆轴承、凸轮轴颈与凸轮轴轴承等摩擦副,而活塞及活塞环与气缸壁面这一滑动摩擦副的相对线速度虽然很高,侧压力也很大,但无法实现压力润滑方式。(2)飞溅润滑:利用发动机工作时运动件溅泼起来的油滴或油雾润滑摩擦表面的润滑方式。显然,这种润滑方式形成的油膜强度较低,润滑油容易氧化变质,用于气缸壁面、活塞销和配气机构的凸轮、挺柱、推杆等零件的工作表面的润滑。

四冲程发动机采用压力润滑方式为主、飞溅润滑方式为辅的连续不断的压力循环润滑方式。(3)润滑脂润滑:通过润滑脂嘴定期加注润滑脂来润滑摩擦表面的润滑方式。如水泵及发电机轴承、曲轴前后端油封处等。三、润滑系组成(1)机油泵—其功用是保证润滑油在润滑系中循环流动,不能间断,并在发动机任何转速下都能以足够高的压力供应足够量的润滑油。这里,一是保证供油循环不间断,二是保证油压在任何转速下基本稳定,前者表明机油泵应始终能吸到油,后者表明机油泵有压力调节装置。(2)机油滤清器—用来滤除润滑油中的金属磨屑、机械杂质和润滑油氧化物,减少磨损,防止润滑油道堵塞。(3)机油冷却器—润滑油温度过高会导致其粘度大幅度下降,不利于在摩擦表面形成油膜,而且加速润滑油老化变质。机油冷却器的作用就是防止润滑油温度过高。(4)油底壳—储存润滑油的容器。(5)集滤器—用金属丝编织的滤网作为机油泵吸油口处的机油粗滤器,防止机油中粗大的杂质进入机油泵。此外,还有机油压力表、机油温度表、润滑油管和润滑油道等。四、润滑油的牌号及其选择

润滑油的牌号依据机油粘度的大小来确定。通常用运动粘度表示。运动粘度是根据一定量的机油在一定的压力下,通过粘度计上一定直径与长度的毛细管所需的时间来确定,其单位为mm2/s。所需时间愈长,机油的运动粘度愈大,机油的牌号愈高。国产机油根据100ºc情况下的机油粘度值进行分类。汽油机机油分为四类,用HQ打头;柴油机机油分为三类,用HC打头。冬天时应选择牌号低的机油;夏天应选择牌号高的机油。国外进口高档机油大多采用稠化机油,四季通用,如SAE10W-30表示在低温下使用时,其粘度与SAE10W一样,而在高温下使用时,其粘度与SAE30一样。第二节润滑系的油路一、东风EQ1090E型传统汽车6100-1型发动机润滑系油路图1-摇臂轴;2-上油道;3-机油泵传动轴;4-主油道;5-横向油道;6-喷油嘴;7-连杆小头油道;机油粗滤器;8-机油粗滤器旁通阀;9-机油粗滤器;10-油管;11-机油泵;12-限压阀;14-固定式集滤器;15-机油细滤器进油阀;16-机油细滤器;17-油底壳。图8-1东风EQ6100-1型发动机润滑示意图第三节润滑系主要部件一、机油泵机油泵的结构形式有两种:齿轮式机油泵和转子式机油泵。轿车发动机一般用转子式机油泵。(1)齿轮式机油泵工作原理:齿轮的端面由机油泵盖封闭,泵体、泵盖和齿轮的各个齿槽组成工作腔。当主动齿轮(半圆键)带动从动齿轮旋转时,进油腔1的容积由于轮齿逐渐脱离啮合而增大,腔内产生一定的真空,机油从进油口进入,被轮齿带到出油腔,此处的容积由于轮齿逐渐进入啮合而减小,压力增大,机油经出油口压入润滑油道。主动、从动齿轮完全处于啮合时,工作腔容积最小,压力极高,使齿轮轴极易损坏,因此在泵盖一侧开有卸压槽3,使接近完全啮合的齿轮副之间的容积与出油腔相通。齿轮式机油泵的典型结构如图所示。来自集滤器通向全流式滤清器通向离心式滤清器

齿轮式机油泵齿轮与泵体的径向间隙一般不超过0.20mm,齿轮端面间隙不超过0.05~0.20mm。间隙过大,润滑油压力降低,泵油量减少。在泵体与泵盖之间有衬垫,既可以防止漏油,又可以用来调整齿轮的端面间隙。在机油泵盖上装有限压阀,它可将主油道的油压控制在正常范围内(0.15~0.6兆帕)。若油压超出上述范围,可增加或减小垫片7的厚度,以调整弹簧8的预紧力,从而保证主油道内的油压在正常范围内。齿轮式机油泵由曲轴或凸轮轴经中间传动机构驱动,汽油机的齿轮式机油泵典型的传动方式是机油泵与分电器由凸轮轴或中间轴上的曲线齿齿轮经同一个传动轴驱动。

齿轮式机油泵的优点是效率高,功率损失小,结构简单,工作可靠,制造较容易;缺点是需要中间传动机构,体积大,制造成本较高,供油不均匀等。国产普通桑塔纳、捷达和奥迪等轿车都采用齿轮泵。(2)转子式机油泵转子式机油泵主要由内、外转子,机油泵体及机油泵盖等零件组成。内转子固定在机油泵传动轴上,外转子自由地安装在泵体内,并与内转子啮合转动。内、外转子之间有一定的偏心距。内转子一般有四个或以上的凸齿,外转子的凹齿数比内转子的凸齿数多一个,内、外转子的齿形轮廓为次摆线。工作原理:机油泵传动轴通过半圆键带动内转子转动,内转子通过与外转子共扼曲线齿形轮廓的啮合,同方向带动外转子转动(外转子与机油泵体内孔间隙配合)。注意到内转子将外转子内腔分割成四个工作腔,由于内外转子中心偏置,这四个工作腔容积随着转子的转动发生了变化,容积增大的区域形成了一定真空,进油口设在这里;容积减小的区域压力提高,出油口设在这里。

转子式机油泵的优点是结构紧凑,供油量大而且油压均匀,噪声小,吸油真空度较高。而且,当机油泵安装在曲轴箱外或安装位置较高时,采用转子式机油泵比较合适。其缺点是内、外转子的啮合表面滑动阻力较大,发动机功率消耗增多,而且由于转速较高,容易产生气泡,影响正常供油。二、机油滤清器机油滤清器滤芯的过滤能力与通过能力成反比。在润滑系油路中一般装用几个不同滤清能力的滤清器——集滤器、粗滤器和细滤器。主油道中不允许断油,因此,不同滤清能力的滤清器分别串联和并联在主油道中。与主油道串联的滤清器称为全流式滤清器;与主油道并联的滤清器称为分流式滤清器。显然,粗滤清器是全流式滤清器,细滤清器是分流式滤清器。细滤器的作用只是在一定时间内将全部机油过滤一遍,起洁净机油的作用,过滤后的机油重新流回油底壳,并不参加摩擦表面的润滑。当机油主油道内压力过低时机油不通过细滤器(单向阀)。

(1)集滤器(2)全流式滤清器(纸质树脂处理)(3)分流式滤清器(离心式,现已不用)三、机油冷却器轿车发动机一般采用水冷式机油冷却器。出水管进水管第四节曲轴箱通风

发动机润滑油消耗率剧增的主要原因有以下几个原因:1、连杆弯曲偏磨,机油上窜;2、活塞环磨损,密封失效,机油上窜;3、气门导管橡胶密封圈损坏,机油下窜;4、曲轴箱通风系统失效,机油上窜。

发动机工作时,总有一部分可燃混合气和废气经活塞环漏到曲轴箱。漏到曲轴箱内的汽油蒸汽凝结后造成机油变稀,性能变坏;废气促使机油氧化变质,更使曲轴箱内压力升高,促使机油上窜到燃烧室内烧掉,也从曲轴油封、衬垫等处渗出而流失。因此,必须在发动机高、低负荷工况下都能使曲轴箱内压力稳定(低负荷时漏气量少,高负荷时漏气量大),这就需要曲轴箱强制通风系统。曲轴箱强制通风系统将漏到曲轴箱内的汽油蒸汽和废气引导到发动机的进气系统,吸入气缸内烧掉,大大减少了发动机的废气排放量。

发动机有害排放物的控制第一节排气净化装置仅涉及发动机的机外净化装置,有:(1)恒温进气空气滤清器(2)二次空气喷射系统(3)催化转换器(4)排气再循环系统(5)曲轴箱通风及汽油蒸发控制系统一、发动机的有害排放物主要有一氧化碳(CO)、碳氢化合物(HC)、氮氧化合物(NOx)和微粒排放。(1)一氧化碳(CO):碳氢燃料的不完全产物,人吸入后将降低血液吸收和运送氧气的能力。(2)碳氢化合物(HC):包括未燃和未完全燃烧的燃油和润滑油蒸汽。(3)氮氧化合物(NOx):燃烧室内高温富氧环境中的产物。HC和Nox在阳光照射下形成光化学烟雾,其主要生成物是臭氧,具有强烈氧化性,对人类、环境危害极大。(4)微粒排放:主要指柴油机排气中的碳烟,其表面吸附的可融性有机物对人的呼吸道有害。二、恒温进气空气滤清器也称进气温度自动调节式空气滤清器(增加一套空气加热和控制装置)。多用于化油器式或节气门体汽油喷射式发动机上。

为什么要进行进气温度调节?当发动机冷起动后,在怠速或小节气门开度下工作时,化油器供给浓混合气,燃烧不完全,发动机排气中CO和HC较多。恒温进气空气滤清器的作用就是当发动机冷起动后,向发动机供给热空气,这样,化油器即使供给稀混合气,热空气也能保证燃油充分汽化和燃烧,从而既减少了CO和HC排放,又能使发动机在低温下稳定工作。当发动机工作温度升高后,恒温进气空气滤清器向发动机供给环境温度的空气。

恒温进气空气滤清器的结构见图6-1、图6-2所示。(进气管真空度作用在真空控制膜盒7上,控制控制阀8开大或关小)

进气管真空度是如何作用到真空控制膜盒上的呢?见图6-3所示的恒温进气空气滤清器的工作原理示意图。双金属进气温度传感器4在环境温度低于30C开启,进气管真空度经真空软管6作用到真空控制膜盒1,并吸引膜片2克服弹簧3弹力向上,通过连杆带动控制阀9将进气导流管10关闭。此时,热空气管7打开,被排气支管8加热的热空气进入空气滤清器(图6-3a)。

当汽车前罩下的环境温度在30~53C之间时,进气温度传感器部分地开启通气阀,使进气管真空度只有一部分传送到控制膜盒。控制阀部分地开启进气导流管,热空气管也部分地开启。因此,部分冷空气和热空气供入发动机,使进气温度基本恒定。见图6-3(b)所示。

当环境温度超过53C后,双金属进气温度传感器将通气阀关闭,真空软管与膜盒隔断,膜片弹簧力使控制阀关闭热空气管,将进气导流管完全打开,供入发动机的全部是环境空气。见图6-3(c)所示。二、二次空气喷射系统二次空气喷射系统的主要功用是在冷起动时由ECU根据发动机温度,控制来自空气泵的新鲜空气喷入排气歧管或三元催化转换器中,使排气中的CO和HC进一步氧化或燃烧成为二氧化碳(CO2)和水(H2O),以控制尾气中CO和HC成分,同时,加快三元催化转换器的升温过程。

二次空气喷射系统主要由空气泵、内部开关阀和单向阀等组成。空气泵通常由发动机带驱动,单向阀的功用是防止废气返回空气泵。

当发动机起动后,电脑不使旁通阀2和分流阀7的电磁线圈通电,于是,旁通阀2和分流阀7的真空割断,此时,空气泵1送出的空气经旁通阀进入大气,这种状态称为起动工作状态,其持续时间的长短决定于发动机的温度。如果发动机的温度很低,起动工作状态的持续时间较长。

当接通发动机点火开关后,电源电压便施加在旁通阀2和分流阀7的电磁线圈上,电脑通过对每个绕组提供接地而使线圈通电。

发动机在预热期间,在发动机温度超过20C时,电脑使旁通阀和分流阀的电磁线圈通电,这时,进气管真空度传送到旁通阀和分流阀,空气泵送出的空气经旁通阀流入分流阀,再由分流阀流入空气分配管,最后由空气喷管喷入排气歧管。

当发动机在正常的冷却液温度下工作时,电脑只使旁通阀电磁线圈通电,而不使分流阀电磁线圈通电。因此,空气泵送出的空气经旁通阀进入分流阀,再经分流阀进入氧化催化转换器。四、催化转换器催化转换器安装在排气歧管之后、排气消声器之前的排气管中。其作用是利用催化剂(通常是金属铂、钯或铑)的作用将排气中的CO、HC和NOx转换为对人体无害的正常气体。

催化转换器有氧化催化转换器和三元催化转换器。氧化转换器只将排气中的CO、HC氧化成CO2和H2O,又称为二元催化转换器,必须提供二次空气作为氧化剂。三元催化转换器可以同时降低CO、HC和NOx的排放。它可以以排气中的CO和HC作为还原剂,将Nox还原成氮气(N2)和氧气(O2),而CO和HC则被氧化为CO2和H2O。当空燃比在理论空燃比(14.7)附近时,氧化-还原反应达到平衡,CO、HC和NOx的排放同时达到最低。

如果在三元催化转换器之后再连接一个氧化催化转换器,排气管中未被氧化的CO和HC继续与供入的二次空气进行氧化反应,进一步降低CO和HC排放。(1)催化转换器不能使用加铅汽油,会使催化剂失效;(2)催化转换器仅在温度超过350C才起作用,因此,催化转换器都安装在温度较高的排气歧管后面附近;(3)混合气空燃比必须在14.7附近。混合气过浓或气缸缺火,都会使转换器过热。五、排气再循环(EGR)系统废气再循环是指把发动机排出的部分废气回送到进气管,并与新鲜混合气一起进入气缸。由于废气中含有大量的CO2,在不参与燃烧,却吸收了大量的热,因此,降低了最高燃烧温度,又使混合气中氧的成份降低,因此减少了NOx排放。

废气再循环使发动机动力性能和经济性能下降,尤其是废气再循环过多,会影响发动机怠速、低转速小负荷、暖机工况的运转稳定性,因此,必须根据发动机工况的变化控制废气再循环率(参与废气再循环的废气比例)。

现代轿车发动机排气再循环(EGR)系统由电脑控制,主要由废气再循环阀(EGR阀)控制废气再循环的废气量。而EGR阀的开度大小由电磁阀和真空调节阀控制作用在EGR阀上真空膜片室内的进气管真空度大小,改变膜片的位置,就改变了EGR阀的开度大小,从而改变了废气再循环的废气量。废气再循环系统工作原理如图6-7所示。

上图是装有排气背压修正阀(真空调节阀7)的EGR排气再循环系统。在EGR(真空)电磁阀6与EGR控制阀8之间的真空管路中装有一背压修正阀(真空调节阀7)。其功用是根据排气歧管中的背压(即根据进气管真空度的变化或节气门开度的大小,因为发动机负荷大时,排气歧管背压高),附加控制排气再循环。

当发动机小负荷工况时,排气背压低,背压修正阀保持EGR阀处于关闭状态,不进行排气再循环;只有在发动机负荷增大,排气歧管背压增大时,背压修正阀才允许EGR阀打开,进行废气再循环。

排气歧管的背压通过管路作用在背压修正阀的背压气室下方。当发动机处于小负荷工况时,排气背压低,在阀门弹簧的作用下去,气室膜片向下移动,使修正阀门关闭真空气道。此时,EGR阀在其阀门弹簧作用下保持关闭,因而不进行废气再循环。

当发动机负荷增大,排气歧管背压升高时,修正阀背压气室下方的背压升高,使膜片克服阀门弹簧弹力向上运动,将修正阀门打开。由EGR电磁阀控制的真空通过背压修正阀而进入EGR控制阀上方真空气室,将EGR阀吸开,排气再循环通道打开,排气进行再循环。EGR电磁阀受ECU控制。ECU通过发动机转速信号、进气压力信号、水温信号、空气流量信号等,通过控制电磁阀开度,来控制进入EGR控制阀上方膜片室内的真空度,从而控制EGR控制阀的开度,改变废气参与再循环的排气量。第二节强制式曲轴箱通风装置(PCV系统)

发动机工作时,有部分可燃混合气和燃烧产物经活塞环由气缸窜入曲轴箱内。当发动机在低温下运行时,还可能有液态燃油漏入曲轴箱内。这将导致润滑油变质,造成机件腐蚀或锈蚀,并且对大气环境HC等气体的污染。

强制式曲轴箱通风装置就是防止曲轴箱内碳氢燃料蒸汽和燃烧产物排放到大气中的净化装置。

强制式曲轴箱通风装置最重要的控制元件是PCV阀,其功用是根据发动机工况的变化自动调节进入气缸的曲轴箱内气体的数量。因此,强制式曲轴箱通风装置又称为PCV系统控制元件PCV阀的作用:根据发动机工况的变化自动调节进入气缸的曲轴箱气体的数量。发动机不工作时PCV阀的开度当发动机不工作时,PCV阀中的弹簧2将其中的锥形阀3压在阀座4上,关闭了曲轴箱与进气管的通路。发动机在怠速或减速时PCV阀的开度在怠速或减速时,进气管真空度很大,克服弹簧力把锥形阀高高举起,这时锥形阀3与PCV阀体1之间只有很小的缝隙。此时,窜入曲轴箱的气体也很少。部分节气门开度时PCV阀的开度进气管真空度比怠速时小,在弹簧的作用下锥形阀3与PCV阀体1之间的缝隙增大。由于窜入曲轴箱的气体较怠速时多,所以需要较大的PCV阀开度。发动机在大负荷工作时PCV阀的开度节气门全开,进气管真空度较小,弹簧将锥形阀3进一步下压,使PCV阀的开度达到最大。此时,将产生更多的曲轴箱气体,必须使PCV阀开度最大。进气管回火时PCV阀的开度如果进气管发生回火,进气管压力增大,锥形阀落在阀座上,如同发动机不工作时一样,以防止回火窜入曲轴箱引起爆炸。如果气缸或活塞严重磨损,将会有更多气体窜入曲轴箱,引起曲轴箱压力异常升高,部分曲轴箱气体从空气滤清器处反喷。PCV阀堵塞,会造成曲轴箱通风不畅PCV软管漏气,会造成发动机怠速不稳若气缸的密封性能良好,PCV系统应该使曲轴箱内的压力略低于大气压力(才能形成强制通风的作用)第三节汽油蒸发控制系统

汽油蒸发(EVAP)排放控制系统的作用是防止燃油箱和化油器浮子室内的燃油蒸发(HC化合物)排入大气造成污染。方法是将这些汽油蒸气收集和储存在活性炭罐内,在发动机工作时再将其送入气缸烧掉。

发动机停机后,燃油蒸气进入炭罐,被活性炭吸附。发动机起动后,进气管真空度经真空软管10传送到限流阀8,膜片上移并将限流孔开启,新鲜空气自炭罐底部向上流过炭罐,与吸附在活性炭表面的汽油蒸气,经限流孔和汽油蒸气管9进入进气歧管。炭罐顶部的限流阀8的作用是用来控制进入进气歧管的汽油蒸气和空气数量。怠速时,传送到膜片上方的真空度很小,致使孔径较大的限流孔关闭,以免破坏怠速时混合气的空燃比;大负荷或高转速工况下,限流阀全开,大、小限流孔均开启。图6燃油蒸发(EVAP)控制系统1-汽油箱2-燃油泵3-蒸发阀4-双通阀5-碳罐6-EVAP控制电磁阀7-进气软管8-节气门9-滤网10-量孔当发动机在中、小负荷下工作(水温

75

C)时,电脑给EVAP控制电磁阀提供搭铁回路,EVAP控制电磁阀开启,活性碳罐与进气管之间形成通路,新鲜空气即从活性碳罐下方的控制量孔进入活性碳罐,清除吸附在碳粒表面上的燃油蒸气,并与其一起通过进气管进入气缸内燃烧。

分配式喷油泵

分配式喷油泵有两大类:轴向压缩式(德国波许公司的VE分配泵)和径向压缩式(英国CAV公司的DPA分配泵)。目前,单柱塞式的VE分配泵占据了车用高速柴油机的绝对份额。分配式喷油泵与柱塞式喷油泵相比,有如下特点:1)分配泵结构紧凑,零件数目少,体积小,重量轻,调速器与供油提前角自动提前器均装在泵体内;2)分配泵凸轮升程小,有利于适应高速柴油机的要求;3)仅需一副柱塞偶件,因此容易保证各缸供油均匀性、供油定时一致性的要求;4)分配泵的运动件靠泵体内的柴油润滑和冷却,因此,对柴油的清洁度要求很高,发动机长时间大负荷工作时柴油温度很高,柱塞容易咬死;5)对多缸机而言,油泵凸轮轴旋转一周,柱塞往复运动几次,线速度很高,柱塞容易咬死。总之,分配式喷油泵对柴油的品质要求很高,不允许有水分。1212-出油阀紧座31-高压泵头32-怠速调解螺钉33-高速调节螺钉前腔(入口)1、组成:如图5-24所示,VE型分配泵由驱动机构、二级滑片式输油泵、高压分配泵头和电磁式断油阀等部分组成。机械式调速器和液压式供油提前角自动提前器也装在分配泵体内。一、VE型分配泵结构

驱动轴19、端面凸轮盘4各自通过凸键与联轴器21连接,静止的滚轮架20内孔作为联轴器的轴承孔,滚轮架上有四副滚轮(四缸机),通过销轴与滚轮架连接。驱动轴转动时,带动联轴器、端面凸轮盘同方向旋转,由于端面凸轮盘被柱塞复位弹簧压紧在滚轮架上,因此,端面凸轮迫使滚轮自转,并使端面凸轮盘作轴向往复直线运动。

端面凸轮盘通过传动销镶嵌在分配柱塞圆盘端开口槽内,由于柱塞复位弹簧将柱塞压紧在端面凸轮盘上,因此带动分配柱塞旋转,凸轮型面又使分配柱塞在旋转的同时,还作往复直线运动。

分配柱塞上有轴向中心油孔3、径向贯通泄油孔2、四个进油槽6(四缸机)、一个燃油分配孔5、外圆周上的压力平衡沉割槽4等。中心油孔与泄油孔相通。止点,此时分配柱塞上的进油槽3与柱塞套20上的进油孔2相通,燃油经进油道17进入柱塞腔4和中心油孔10内。

柱塞套上有一个进油孔2和四个分配油道7(四缸机)。二、VE型分配泵工作过程1)进油过程:当平面凸轮盘12的凸轮型面凹下部分转至与滚轮13接触时,柱塞复位弹簧将分配柱塞14由右向左推至柱塞下2)泵油过程:当平面凸轮盘由凹下部分转至凸起部分与滚轮接触时,分配柱塞在凸轮型面的推动下由左向右移动。通常在柱塞处于下止点时,柱塞头部的进油槽恰好错过进油孔,对头部没有环槽的分配柱塞来说,柱塞处在下止点时就意味着进油结束,柱塞开始升起就压油。(b)

当分配孔18转至与柱塞套上的一个出油孔8相通,此时被认为是几何供油始点,燃油进入泵体上的分配油道7,柱塞继续右移,油压超过出油阀开启压力时,高压燃油经过出油阀、高压油管进入对应气缸的喷油器喷油。

柱塞从下止点起至柱塞上的燃油分配孔转至与柱塞套上的一个出油孔相通时所移动的行程称为柱塞的预行程,可通过增减平面凸轮盘与柱塞底部圆盘之间的调整垫片厚度来调整柱塞预行程的大小(改变柱塞在下止点时在端面凸轮上的位置)?3)停油过程:分配柱塞继续在凸轮凸起型面推动下右移,当柱塞右移到柱塞上的泄油孔不再被油量调节套筒15遮蔽时,柱塞中心油孔高压油腔与泵体内低压油腔相通,油压迅速下降,出油阀关闭,停止供油。(c)

从柱塞上的燃油分配孔与柱塞套上的出油孔相通起,至泄油孔移出油量调节套筒为止,柱塞在这一期间移动的行程称为柱塞的有效压油行程。显然,移动油量调节套筒15的位置可以改变有效压油行程的大小。当调速器控制油量调节套筒向左移动时,有效压油行程减小,供油量减少;当油量调节套筒向右移动时,有效压油行程增大,供油量增加。

4)压力平衡过程:分配柱塞上设有压力平衡槽(在柱塞上燃油分配孔180度角对面),在分配柱塞旋转和移动过程中,压力平衡槽始终与喷油泵体内腔相通。在某一汽缸停止供油后,压力平衡槽正好转至与该汽缸对应的分配油道相通,于是两处油压相同,这样就保证了各分配油道供油结束时的残余油压相等,从而保证了各缸供油的均匀性。(d)

5)停车

VE型分配泵装有电磁式断油阀。起动时,将起动开关2置于ST位置,电流不经过电阻3,直接流过电磁线圈4,因此,电流大而产生的电磁吸力强,阀门6开启;起动完毕,将起动开关2置于ON位置,由于泵腔内油压达到8巴左右(中等油压),使阀门6保持开启所需的电磁吸力较小,因此,可以减小流过电磁线圈4的电流(通过电阻3);停机时,将起动开关2置于OFF位置,电路断开,阀门6在回位弹簧力的作用下关闭,停止供油。6)泵油提前角自动调节过程活塞左端与二级滑片式输油泵的入口相通,并有弹簧5压在活塞上;活塞右端与喷油泵体内腔相通,其压力等于二级滑片式输油泵的出口压力。前腔(入口压力)后腔(出口压力)

发动机转速稳定时,作用在活塞两端的作用力相等,活塞平衡在某一位置。若转速升高,二级滑片式输油泵的出口压力增大,活塞左移,通过连接销3和传力销4带动滚轮架7绕其轴线转动一定的角度,直至活塞两端的作用力重新达到平衡,其旋转方向与平面凸轮盘的旋转方向相反,供油提前。第六节调速器一、喷油泵速度特性

供油量随发动机转速变化的关系称作喷油泵速度特性。

柱塞式喷油泵由于进、回油孔的节流作用随发动机转速的升高而增大,因此,实际供油开始时刻提前实际供油结束时刻推迟导致柱塞的实际有效压油行程增大,供油量也增加。

VE分配泵由于在柱塞升起时,回油孔是逐渐被油量调节滑套打开,在刚打开时,通路面积很小,回油节流阻力较大,随着发动机转速增加,回油孔节流作用增大,造成高压系统内卸压滞后,出油阀关闭迟后,供油延续角加大,供油量增多。二、汽车柴油机燃油系统为什么要设置调速器?当发动机在高转速运转时若因负荷减少使转速升高时,喷油泵供油量增大,更促使发动机转速进一步升高,极易导致发动机超速而出现排气管冒黑烟、发动机过热等不良现象,严重时出现飞轮飞脱等机件损坏、伤人事故;当发动机转速因负荷增加而低于最低稳定转速时,喷油泵供油量也减少,转速继续下降,发动机熄火。因此,车用柴油机因道路阻力的变化范围大,至少要装限制最高和最低转速的两极式调速器。三、汽车柴油机调速器的分类1、按功能分两极式调速器和全程式调速器。2、按转速传感原理分为机械离心式调速器、气动膜片式调速器、复合式调速器三类。现代车用高速柴油机VE泵的调速器是全程式机械离心调速器。(a)两极式n(b)全程式HHn四、VE泵全程式机械离心调速器结构工作原理

导杆16通过销轴M固定在泵体上;张力杠杆12、起动杠杆15通过销轴N与导杆16连接在一起,可分别绕销轴N摆动(导杆16被回位顶靠在最大供油量限制螺钉上不动)。

起动杠杆15的下端是球头销,嵌入供油量调节套筒21的凹槽中。当起动杠杆15绕N销轴转动或随导杆16绕M销轴转动时(最大供油量限制螺钉11转动),都改变了供油量调节套筒21与分配柱塞19上的泄油孔20的相对位置,即改变了有效压油行程。1、起动工况调速手柄5紧靠在高速限位螺钉7上,调速弹簧8被最大程度拉紧。怠速弹簧10被压并,凸台迫使张力杠杆12绕N销轴逆时针方向转动,起动弹簧13张力迫使起动杠杆15绕销轴N逆时针方向转动,推动调速套筒4克服四块飞锤3离心力左移,飞锤处于完全收拢。此时,起动杠杆15下端的球头销使供油量调节套筒21右移到最右位置C,柱塞的有效压油行程最大,供油量最大。

起动后,飞锤的离心力克服柔软的起动弹簧力,调速套筒4右移,推动起动杠杆15顺时针方向转动,供油量调节套筒21左移,供油量减少,直至起动杠杆15上端靠在张力杠杆12的挡销14上,由于起动转速低,克服不了调速弹簧8张力,调速套筒4不再移动。2、怠速工况调速手柄5靠紧在怠速限位螺钉6处,调速弹簧处于最松状态,飞锤向外张开,调速套筒4右移,推动起动杠杆15及张力杠杆12顺时针方向绕N销轴转动(两者靠紧在一起),供油量调节套筒21左移到极限位置,供油量大幅度减少。F怠速F调速F起动支点F飞锤

张力杠杆12顺时针方向转动时使怠速弹簧10受到压缩,最终飞锤离心力与调速弹簧张力平衡于某一位置,发动机处于怠速稳定运转,上述平衡一旦由于某种原因打破,发动机转速发生了变化,都能导致供油量调节套筒21的位置发生变化,最终使怠速稳定。F怠速F调速F起动支点F飞锤3、中间转速工况调速手柄5处于怠速限位螺钉6与高速限位螺钉7之间的任意位置,调速弹簧8相对于怠速位置被拉长,张力杠杆12及起动杠杆15(压紧在一起)逆时针方向绕N销轴转动,供油量套筒21右移,供油量增加,发动机处于中间转速状态。此时,调速手柄5的某一位置控制了发动机在某一转速下稳定运转,调速弹簧张力与飞锤离心力处于平衡状态。F怠速F调速F起动F飞锤支点4、最高转速工况当调速手柄5靠紧高速限位螺钉7时,控制了发动机在最高转速稳定运转,原理同上。5、最大供油量的调节调速手柄5靠紧高速限位螺钉7,向内拧入最大供油量限位螺钉11,导杆16克服下端的回位弹簧17的张力,绕固定于泵体上的M销轴逆时针方向转动,由于N销轴也通过导杆16下端,因此N销轴也绕M销轴逆时针方向转动,即起动杠杆15(包括张力杠杆12)一起绕M销轴逆时针方向转动,供油量调节套筒21右移,最大供油量增加。反之,向外退出最大供油量限位螺钉11,最大供油量减少。五、附加装置1、增压补偿器工作原理其作用是根据增压压力的大小,自动增减供油量,提高发动机功率,降低油耗,降低低速烟度(低速时增压压力低,甚至不起增压作用)。

膜片把补偿器分成上、下两个腔。上腔通进气管,即增压压力;下腔经通气孔8通大气。膜片下面装有弹簧9。补偿器筏杆10与膜片5相连,并与膜片一起运动。筏杆10的中下部加工成上细下粗的锥体,补偿杠杆2的上端与锥体相靠。在筏杆上还钻有纵向长孔和横向孔,以避免筏杆上下移动时气体阻力的作用。补偿杠杆可绕销轴1转动,其下端靠在张力杠杆11上。

当进气管中的增压压力增大时,膜片5带动筏杆10向下运动,补偿杠杆2绕销轴1顺时针方向转动,张力杠杆11在调速弹簧13的作用下绕销轴N逆时针方向转动,从而使起动杠杆下端的球头销向右拨动供油量调节套筒12,供油量增加;反之亦然。2、转矩校正装置

VE分配泵上可装备转矩正校正装置或负校正装置。发动机中间转速时气缸内的充气效率最高,可多供油使中间转速范围内输出转矩最高。这就意味着发动机从高速减速到中间转速时,喷油泵柱塞的有效压油行程在增大,供油量增加。

(a)正转矩校正直列泵Hn

校正杠杆6的上端支承在销轴S上,销轴S固定在起动杠杆1上端的凸耳上。校正销7装在起动杠杆1中部的孔内,校正弹簧2迫使校正销7向右移动,推动校正杠杆6逆时针方向转动,直至校正杠杆6中部抵靠在张力杠杆4的挡销5上。

飞锤离心力迫使起动杠杆1绕销轴N顺时针方向转动,但由于调速弹簧拉紧力较大,张力杠杆4不动,因此,张力杠杆4上的挡销5迫使校正杠杆6绕销轴S顺时针方向转动,压缩校正弹簧2。F校正

一旦柴油机转速升高到飞锤离心力对销轴N的力矩大于校正弹簧力对挡销5的力矩,起动杠杆1绕销轴N顺时针方向转动,同时,校正杠杆6绕销轴S顺时针方向转动,校正弹簧2进一步受到压缩,直至校正销7的大端靠在起动杠杆上为止,正校正结束。此时,油量调节套筒8左移一段行程,供油量减少。F校正

由于高速时为了保证发动机一定的扭矩输出,供油量较大,这使得低速时供油量偏大,多余的供油量使输出扭矩增加不明显,甚至因燃烧恶化使输出扭矩降低。这样,剩余的供油量就只增加排气烟度了。负转矩校正可以防止柴油机低速时冒黑烟,即低速时齿秆行程减小,喷油泵的供油量减少。调速套筒的轴向分力F直接作用在校正杠杆6上,使校正杠杆6靠在张力杠杆4的挡销5上。校正弹簧2弹力向右,使校正销7的大端10靠在张力杠杆4的停驻点11上。调速套筒的轴向力F具有迫使校正杠杆6绕张力杠杆4上的挡销5逆时针方向转动的趋势,校正杠杆6的下端将迫使校正弹簧2受到压缩。Hn直列泵(a)负转矩校正

一旦柴油机转速升高到调速套筒的轴向力F对张力杠杆4上的挡销5的力矩大于校正弹簧2的弹力对挡销5的力矩,则使校正杠杆6绕张力杠杆4上的挡销5逆时针方向转动,通过销轴S带动起动杠杆1绕N轴逆时针方向转动,油量调节套筒8右移,有效压油行程增加,供油量增加。直至校正杠杆6的下端靠上校正销7的大端10,负校正结束。F弹

3、负荷传感供油提前装置其作用是根据柴油机负荷的变化自动改变供油提前角。

当调速手柄位置一定时(柴油机控制转速一定),若负荷减小,飞锤张大,调速套筒7右移,调速套筒上的量孔6与调速器轴8上的小孔相通,喷油泵体内腔的燃油回流到二级输油泵3的入口,使喷油泵体内的燃油压力降低,即作用在供油提前角自动液压油缸4右端的油压降低,活塞向右移动,其旋转方向与平面凸轮盘的旋转方向相同,供油提前角减小。反之,若负荷增大,飞锤收拢,调速套筒上的量孔6被关闭,喷油泵体内腔的油压升高,液压油缸4中的活塞向左移动,其旋转方向与平面凸轮盘的旋转方向相反,供油提前角增大。

4、大气压力补偿器其作用是随着大气压力的降低或海拔高度的增加自动减少供油量,以防止柴油机排气冒黑烟。大气压力降低时,大气压力感知盒6向外膨胀,上端受到限制,因此,使推杆7向下移动,推杆下端锥面上大下小,迫使连接销5向左移动,推动控制臂4绕销轴S逆时针方向转动,其下端推动张力杠杆9和起动杠杆10绕销轴N顺时针方向转动,油量控制套筒1向左移动,供油量减少。第七节电控柴油机喷射系统电控柴油机喷射系统的目的:1、降低柴油机的排放;2、改善柴油机的运转性能;3、降低柴油机燃油消耗率。电控柴油机喷射系统的优点:1、机械控制喷射系统的基本控制信息是柴油机的转速和加速踏板的位置;电控喷射系统通过许多传感器检测柴油机的运行状态和环境条件,并由电控单元控制每循环供油量。当需要扩大控制功能时,只需改变电控单元的存储软件,不需增加附加装置。2、机械控制喷射系统由于设定错误和磨损等原因,供油时刻会产生误差;电控喷射系统中总是根据曲轴位置的基本信号进行再检查,因此供油提前角准确。3、电控喷射装置可以通过改变输入装置的程序或数据,改变控制特性,因此,一种电控喷射装置可以适用于多种柴油机。一、ECD系统(电控VE泵)的控制功能及组成电控柴油喷射系统一般由传感器、电控单元(ECU)和执行器三部分组成。

传感器的作用是实时检测柴油机与汽车的运行状态,以及驾驶员的操作意向和操作量等信息,并将信息输入电控单元。

电控单元的核心是计算机,与软件一起负责信息的采集、处理、计算和执行程序,并将运行结果作为控制指令输出到执行器。

执行器的作用按照电控单元发出的控制指令,调节供油量和供油定时,以达到调节柴油机运行状态的目的。

控制功能中最主要的功能是供油量和供油定时的控制,其它扩展功能一般需要通过供油量和供油定时的控制来实现。二、供油量的控制在ECD系统中,首先根据加速踏板位置(调速弹簧预紧力)和柴油机转速的输入信号,计算出基本供油量,然后根据来自冷却液温度、进气温度和进气压力等传感器信号进行修正;再按供油量套筒位置传感器信号进行反馈修正后,确定最佳供油量。因此,ECD系统对低温起动、加速、高原行驶等工况都能精确地确定柴油机运转时的最佳供油量。

电控单元把计算和修正的最终结果作为控制信号传到供油量控制电磁阀,产生磁力,吸引可动铁心,通过杠杆将供油量调节套筒右移。控制信号的电流愈大,磁场愈强,供油量愈多。

三、怠速转速的控制电控单元根据加速踏板位置传感器、车速传感器等输入信号以及起动机信号,决定何时开始怠速控制,并根据冷却液温度传感器、空调及空挡开关等信号,计算出设定的怠速转速及相应的供油量,并根据柴油机转速的反馈信号,不断对供油量进行修正,以便怠速转速稳定。四、供油定时的控制电控单元首先根据柴油机转速和加速踏板位置传感器的输入信号,初步确定一个供油时刻,然后根据进气压力、冷却液温度等传感器的信号和起动机信号进行修正。图5-45供油定时的控制1-喷油提前器活塞位置传感器2-喷油提前器活塞3-供油定时控制阀

4-高压腔

5-低压腔1-喷油提前器活塞位置传感器

2-喷油提前器活塞3-供油定时控制阀

4-高压腔5-低压腔

喷油泵喷油提前器活塞位置传感器1的铁心直接与喷油提前器的活塞相连,喷油泵喷油提前器活塞位置信号输送给电控单元,以实行反馈控制。

喷油提前器活塞位置传感器为非接触式电感传感器,其可动铁心随活塞一起动作,当线圈内的可动铁心移动时,引起线圈电感的变化,借以检测活塞的位置。6-供油定时控制阀线圈7-可动铁心8-弹簧

电控单元根据最后确定的供油时刻,向供油定时控制阀3的线圈6通电,可动铁心7被电磁铁吸引,压缩弹簧8向右移动,打开喷油提前器由高压腔4通往低压腔5的油路,使喷油提前器活塞两侧的压差缩小,活塞2向右移动,供油时刻推迟,即供油提前角减小。

通向供油定时控制阀线圈的电流是脉冲电流,电控单元通过改变脉冲电流信号的占空比,改变由喷油器的高压腔到低压腔的流通截面积,以调整喷油提前器活塞两侧的压力差,使活塞产生不同的位移,达到控制供油时刻的目的。第九节发动机的进气系统

电喷发动机中,进气系统包括空气滤清器、进气总管、进气歧管、空气流量计或进气管压力传感器等。一、空气滤清器一般由进气导流管、空气滤清器盖、空气滤清器外壳和滤芯等组成。若不装空气滤清器,发动机寿命将缩短2/3。若空气滤清器滤芯堵塞,发动机气缸内进气不畅,怠速容易熄火,油门响应性变差(油门加大时,发动机功率变化不连续,导致车子一冲一冲的),需要经常清洗或更换。轿车用发动机常用干式纸滤芯空气滤清器,带进气导流管。

现代轿车电喷发动机带进气谐振腔,为了增强发动机的进气谐振效果,空气滤清器的进气导流管需要有较大的容积,但是导流管不能太粗,以保证一定的空气流速,因此,进气导流管只能做得很长。二、进气支管进气支管内到各气缸的气体流道的长度尽可能相等,内壁应该光滑。一般发动机的进气支管由合金铸铁制造,轿车发动机多用铝合金制造(重量轻,导热性好)。对现代轿车气道喷射式(多点喷射)发动机,近年来也有用复合塑料进气支管的。1、进气支管加热—老式化油器式或节气门体单点汽油喷射式汽油机需要进气支管加热,气道燃油喷射式不需要进气支管加热。2、谐振进气系统进气过程具有间歇性和周期性,因此进气支管内产生一定幅度的压力波(当地声速传播)。若利用进气支管内压力波传播的动态效应(波动效应和惯性效应),使进气门开启时正好正压力波到达进气门,则使进气充量增加,发动机功率增大。利用一定长度和直径的进气支管或进气导流管与一定容积的谐振室组成谐振进气系统,就是利用进气波动效应增加进气充量,参见图5-53。3、可变进气支管为了改善发动机的动力性和经济性,要求发动机在高转速、大负荷时装短而粗的进气支管;而在低转速、小负荷时装备细而长的进气支管;中间转速、中等负荷则居中。因此,高档轿车发动机一般要求装备可变进气支管(长度、容积),如日本马自达汽车公司的626(V6)发动机。

图5-57所示是一种能根据发动机转速和负荷的变化改变有效长度的进气支管。当发动机低速运转时,发动机电控单元5指令转换阀控制机构4关闭转换阀3,进气流道细而长,提高了进气流速,增强了气流惯性;当发动机高速运转时,转换阀开启,进气流道短而粗,进气阻力小。这是两挡可变进气支管结构。图5-57可变进气支管

另一种可变进气支管结构如图5-58所示,每个进气支管都有两个进气通道。低速时,旋转阀将短进气通道关闭,此时,空气只能经长进气通道进入气缸;高速时,旋转阀将短进气通道打开,同时,将长进气通道部分短路,此时,空气经两个短进气通道进入气缸。第十节发动机的排气系统

其作用是尽可能减少排气阻力和噪声。主要包括排气支管、排气管和消声器。一、单排气系统及双排气系统单排气系统指废气经排气支管、排气管、催化转换器和消声器排入大气中。V6发动机有两个排气支管,大多数V6发动机采用单排气系统,即通过一个叉型管将两个排气支管连接到一个排气管上,如图5-60a所示。

但有些V型发动机采用两个单排气系统,即每个排气支管各自都连接一个排气管、催化转换器和消声器和排气尾管,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论