2024届四川营山县数学八年级第二学期期末检测试题含解析_第1页
2024届四川营山县数学八年级第二学期期末检测试题含解析_第2页
2024届四川营山县数学八年级第二学期期末检测试题含解析_第3页
2024届四川营山县数学八年级第二学期期末检测试题含解析_第4页
2024届四川营山县数学八年级第二学期期末检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川营山县数学八年级第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,把一个边长为1的正方形放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数为().A. B.1.5 C. D.1.72.如图,△ABC顶点C的坐标是(1,-3),过点C作AB边上的高线CD,则垂足D点坐标为()A.(1,0) B.(0,1)C.(-3,0) D.(0,-3)3.如图,平行四边形ABCD中,,点E为BC边中点,,则AE的长为()A.2cm B.3cm C.4cm D.6cm4.已知三角形三边长为a,b,c,如果a-6+|b﹣8|+(c﹣10)2=0,则△ABC是()A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形 D.不是直角三角形5.在下列四组数中,不是勾股数的一组数是()A.a=15,b=8,c=17 B.a=9,b=12,c=15 C.a=7,b=24,c=25 D.a=3,b=5,c=76.某校九年级班全体学生2016年初中毕业体育考试的成绩统计如表:成绩分15192224252830人数人2566876根据表中的信息判断,下列结论中错误的是A.该班一共有40名同学 B.该班学生这次考试成绩的众数是25分C.该班学生这次考试成绩的中位数是25分 D.该班学生这次考试成绩的平均数是25分7.已知a<b,则下列不等式正确的是()A.a﹣3<b﹣3 B.> C.﹣a<﹣b D.6a>6b8.如图,在正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A.135° B.120° C.1.5° D.2.5°9.下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有1个白色正方形,图②中有4个白色正方形,图③中有7个白色正方形,图④中有10个白色正方形,,依次规律,图⑩中白色正方形的个数是()A.27 B.28 C.29 D.3010.下列计算正确的是()A. B. C. D.﹣二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.12.若方程的解是正数,则m的取值范围_____.13.如图,线段AB两个点的坐标分别为A2.5,5,B5,0,以原点为位似中心,将线段AB缩小得到线段CD,若点D的坐标为2,0,则点C的坐标为14.计算=_____,(﹣)2=_____,3﹣=_____.15.正比例函数图象经过,则这个正比例函数的解析式是_________.16.如图,菱形ABCD中,点M、N分别在AD,BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC=_____.17.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.18.已知空气的密度是0.001239,用科学记数法表示为________三、解答题(共66分)19.(10分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.20.(6分)甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地后立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为时),与之间的函数图象如图所示(1)甲车从地到地的速度是__________千米/时,乙车的速度是__________千米/时;(2)求甲车从地到达地的行驶时间;(3)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;(4)求乙车到达地时甲车距地的路程.21.(6分)计算:(1)(2)已知,,求的值.22.(8分)如图,在直角坐标系中,A(﹣1,2),B(﹣4,﹣2).(1)分别作点A,B关于原点的对称点C,D,并写出点C,点D的坐标;(2)依次连接AB,BC,CD,DA,并证明四边形ABCD是平行四边形.23.(8分)先化简(),再选取一个你喜欢的a的值代入求值.24.(8分)某水果批发市场规定,批发苹果不少于100千克时,批发价为每千克3.5元,小王携带现金7000元到这市场购苹果,并以批发价买进.如果购买的苹果为x千克,小王付款后的剩余现金为y元(1)写出y关于x的函数关系式,并写出自变量x的取值范围;(2)若小王购买800千克苹果,则小王付款后剩余的现金为多少元?25.(10分)如图,平行四边形ABCD中,点E、F分别是AD、BC的中点26.(10分)如图,在中,是边上一点,是的中点,过点作的平行线交的延长线于点,且,连接.(1)求证:是的中点;(2)当满足什么条件时,四边形是正方形,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

根据勾股定理求出OA的长,根据实数与数轴的知识解答.【题目详解】,∴OA=,则点A对应的数是,故选A.【题目点拨】本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.2、A【解题分析】

根据在同一平面内,垂直于同一直线的两直线平行可得CD∥y轴,再根据平行于y轴上的点的横坐标相同解答.【题目详解】如图,∵CD⊥x轴,∴CD∥y轴,∵点C的坐标是(1,-3),∴点D的横坐标为1,∵点D在x轴上,∴点D的纵坐标为0,∴点D的坐标为(1,0).故选:A.【题目点拨】本题考查了坐标与图形性质,比较简单,作出图形更形象直观.3、B【解题分析】

由平行四边形的性质得出BC=AD=6cm,由直角三角形斜边上的中线性质即可得出结果.【题目详解】解:∵四边形ABCD是平行四边形,∴BC=AD=6cm,∵E为BC的中点,AC⊥AB,∴AE=BC=3cm,故选:B.【题目点拨】本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.4、C【解题分析】因为a-6+|b-8|+(c-10)2=0,所以有(a-6)

2

=0,|b-8|=0,|c-10|=0,所以a=6,b=8,c=10,因为

a2+b2=c2

,所以ABC的形状是直角三角形,故选B.5、D【解题分析】解:A.152+82=172=289,是勾股数;B.92+122=152=225,是勾股数;C.72+242=252=625,是勾股数;D.32+52≠72,不是勾股数.故选D.6、D【解题分析】

结合表格根据众数、平均数、中位数的概念即可求解.【题目详解】该班人数为:,得25分的人数最多,众数为25,第20和21名同学的成绩的平均值为中位数,中位数为:,平均数为:.故错误的为D.故选:D.【题目点拨】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.7、A【解题分析】

利用不等式的性质判断即可.【题目详解】解:A、在不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,原变形正确,故本选项符合题意.B、在不等式a<b的两边同时除以2,不等式仍成立,即<,原变形错误,故本选项不符合题意.C、在不等式a<b的两边同时乘以﹣1,不等号方向改变,即﹣a>﹣b,原变形错误,故本选项不符合题意.D、在不等式a<b的两边同时乘以6,不等式仍成立,即6a<6b,原变形错误,故本选项不符合题意.故选:A.【题目点拨】此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.8、C【解题分析】

因为正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,所以∠DBC=∠BDC=45°,∠DBF=∠FBE=6.5°,所以∠BPD=∠PBC+∠BCP=90°+6.5°=4.5°.所以∠FPC=∠BPD=4.5°.故选C考点:4.正方形的性质;5.菱形的性质;6.三角形外角的性质.9、B【解题分析】

仔细观察图形,找到图形的个数与白色正方形的个数的通项公式后代入n=10后即可求解.【题目详解】解:观察图形发现:图①中有1个白色正方形,图②中有1+3×(2-1)=4个白色正方形,图③中有1+3×(3-1)=7个白色正方形,图④中有1+3×(4-1)=10个白色正方形,…,图n中有1+3(n-1)=3n-2个白色的正方形,当n=10时,1+3×(10-1)=28,故选:B.【题目点拨】本题是对图形变化规律的考查,难点在于利用求和公式求出第n个图形的黑色正方形的数目的通项表达式.10、C【解题分析】

根据二次根式的运算法则即可求出答案.【题目详解】解:(A)原式=2﹣=,故A错误;(B)原式=2,故B错误;(D)原式=﹣,故D错误;故选C.【题目点拨】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.二、填空题(每小题3分,共24分)11、3【解题分析】

根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系,求得最小值.【题目详解】设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+1.∵4>0∴当t=3s时,S取得最小值.【题目点拨】考点:二次函数的应用.12、m>-2且m≠0【解题分析】分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.解析:解方程解为正数,∴且m≠0.故答案为m>-2且m≠013、1,2【解题分析】

利用点B和点D的坐标之间的关系得到线段AB缩小2.5倍得到线段CD,然后确定C点坐标.【题目详解】解:∵将线段AB缩小得到线段CD,点B(5,0)的对应点D的坐标为(2.0),∴线段AB缩小2.5倍得到线段CD,∴点C的坐标为(1,2).【题目点拨】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.14、62.【解题分析】

根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【题目详解】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【题目点拨】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.15、【解题分析】

设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.【题目详解】解:设这个正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(3,−6),∴−6=3k,解得k=−2,∴y=−2x.故答案是:y=−2x.【题目点拨】此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.16、62°【解题分析】

证明≌,根据全等三角形的性质得到AO=CO,根据菱形的性质有:AD=DC,根据等腰三角形三线合一的性质得到DO⊥AC,即∠DOC=90°.根据平行线的性质得到∠DCA=28°,根据三角形的内角和即可求解.【题目详解】四边形ABCD是菱形,AD//BC,在与中,,≌;AO=CO,AD=DC,∴DO⊥AC,∴∠DOC=90°.∵AD∥BC,∴∠BAC=∠DCA.∵∠BAC=28°,∠BAC=∠DCA.,∴∠DCA=28°,∴∠ODC=90°-28°=62°.故答案为62°【题目点拨】考查菱形的性质,等腰三角形的性质,平行线的性质,三角形的内角和定理等,比较基础,数形结合是解题的关键.17、y=﹣x+【解题分析】

在Rt△OAB中,OA=4,OB=3,用勾股定理计算出AB=5,再根据折叠的性质得BA′=BA=5,CA′=CA,则OA′=BA′﹣OB=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,根据勾股定理得到t2+22=(4﹣t)2,解得t=,则C点坐标为(0,),然后利用待定系数法确定直线BC的解析式【题目详解】解:∵A(0,4),B(3,0),∴OA=4,OB=3,在Rt△OAB中,AB==5,∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,∴BA′=BA=5,CA′=CA,∴OA′=BA′﹣OB=5﹣3=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,∵OC2+OA′2=CA′2,∴t2+22=(4﹣t)2,解得t=,∴C点坐标为(0,),设直线BC的解析式为y=kx+b,把B(3,0)、C(0,)代入得,解得∴直线BC的解析式为y=﹣x+故答案为y=﹣x+.【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.18、1.239×10-3.【解题分析】

绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.001239=1.239×10-3故答案为:1.239×10-3.【题目点拨】本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.三、解答题(共66分)19、见试题解析【解题分析】试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.证明:如图,连接PC,∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=PC,所以EF=AP.20、(1);(2)甲车从地到达地的行驶时间是2.5小时;(3)甲车返回时与之间的函数关系式是;(4)乙车到达地时甲车距地的路程是175千米.【解题分析】

(1)根据题意列算式计算即可得到结论;(2)根据题意列算式计算即可得到结论;(3)设甲车返回时与之间的函数关系式为y=kt+b,根据题意列方程组求解即可得到结论;(4)根据题意列算式计算即可得到结论.【题目详解】解:(1)甲车从A地开往B地时的速度是:180÷1.5=120千米/时,乙车从B地开往A地的速度是:(300-180)÷1.5=80千米/时,

故答案为:120;80;(2)(小时)答:甲车从地到达地的行驶时间是2.5小时(3)设甲车返回时与之间的函数关系式为,则有解得:,∴甲车返回时与之间的函数关系式是(4)小时,把代入得:答:乙车到达地时甲车距地的路程是175千米.【题目点拨】本题考查了待定系数法及一次函数的解析式的运用,行程问题的数量关系的运用,解答时正确看图理解题意和求出一次函数的解析式是关键.21、(1);(2)8.【解题分析】

(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据、的值即可求得所求式子的值.【题目详解】(1)解:原式;(2)解:原式.【题目点拨】本题考查了二次根式的化简求值,分母有理化,解答本题的关键是明确二次根式化简求值的方法.22、(1)点C,点D的坐标分别为:(1,﹣2),(4,2);(2)见解析.【解题分析】

(1)直接利用关于原点对称点的性质进而得出答案;(2)利用平行四边形的判定方法得出答案.【题目详解】(1)解:∵A(﹣1,2),B(﹣4,﹣2),点A,B关于原点的对称点C,D,∴点C,点D的坐标分别为:(1,﹣2),(4,2);(2)证明:∵AD=BC=4+1=5,∵A(﹣1,2),B(﹣4,﹣2),C(1,﹣2),D(4,2);∴AD∥BC,∴四边形ABCD是平行四边形.【题目点拨】此题主要考查了旋转变换以及平行四边形的判定,正确把握平行四边形的判定方法是解题关键.23、a2+1,求值不唯一,使a≠±1皆可.【解题分析】先通分约分进行化简,然后再代入a的值进行计算,但a不能取±1.24、(1)1≤x≤2000;(2)2元.【解题分析】

(1)利用已知批发价为每千克3.5元,小王携带现金7000元到这个市场购苹果,求得解析式,又因为批发苹果不少于1千克时,批发价为每千克3.5元,所以x≥1.(2)把x=800代入函数解析式即可得到结论.【题目详解】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论