河南省商丘综合实验中学2024届数学八下期末统考模拟试题含解析_第1页
河南省商丘综合实验中学2024届数学八下期末统考模拟试题含解析_第2页
河南省商丘综合实验中学2024届数学八下期末统考模拟试题含解析_第3页
河南省商丘综合实验中学2024届数学八下期末统考模拟试题含解析_第4页
河南省商丘综合实验中学2024届数学八下期末统考模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省商丘综合实验中学2024届数学八下期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么请你估计该厂这20万件产品中合格产品约有()A.1万件 B.18万件 C.19万件 D.20万件2.化简的结果是()A.-2 B.2 C. D.43.如图,已知直线y=3x+b与y=ax-2的交点的横坐标为,根据图象有下列3个结论:①a>0;②b<0;③x>-2是不等式

3x+b>ax-2的解集其中正确的个数是()A.0, B.1, C.2, D.34.晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐三项体育成绩(百分制)依次95分、90分、86分,则小桐这学期的体育成绩是()A.88 B.89分 C.90分 D.91分5.如图,在□ABCD中,AC与BD相交于点O,点E是边BC的中点,AB=4,则OE的长是()A.2 B.C.1 D.6.如图,在四边形ABCD中,∠A=90°,AB=3,,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为()A.2 B.3 C.4 D.7.平行四边形的一边长为10,则它的两条对角线长可以是()A.10和12 B.12和32 C.6和8 D.8和108.下列命题正确的是()A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.9.如图,DE是的中位线,则与四边形DBCE的面积之比是()A. B. C. D.10.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③二、填空题(每小题3分,共24分)11.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=,那么正方形ABCD的面积是__________.12.根据图中的程序,当输入时,输出的结果______.13.如图,是的中位线,平分交于,,则的长为________.14.《算法统宗》记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为30步,宽和对角线之和为50步.不知该田有几亩?请我帮他算一算,该田有___亩(1亩=240平方步).15.如图,一次函数与的图象相交于点,则关于的不等式的解集是________.16.如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_____.17.给出下列3个分式:,它们的最简公分母为__________.18.如图,在菱形ABCD中,AC交BD于P,E为BC上一点,AE交BD于F,若AB=AE,,则下列结论:①AF=AP;②AE=FD;③BE=AF.正确的是______(填序号).三、解答题(共66分)19.(10分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.(1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;(2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;(3)如图3,当点在线段的延长线上,且时,求线段的长.20.(6分)已知一次函数的图像经过点(2,1)和(0,-2).(1)求该函数的解析式;(2)判断点(-4,6)是否在该函数图像上.21.(6分)如图,在平面直角坐标系xoy中,矩形OABC的顶点B坐标为(12,5),点D在CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:(1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;(2)若△BEF为等腰三角形,求此时正方形ADEF的边长;(3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.22.(8分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.(1)若∠F=62°,求∠D的度数;(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.23.(8分)如图,在△ABC中,AE是∠BAC的角平分线,交BC于点E,DE∥AB交AC于点D.(1)求证AD=ED;(2)若AC=AB,DE=3,求AC的长.24.(8分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=12BC,连结CD、EF,那么CD与EF25.(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.26.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,到达目的地后停止,设慢车行驶时间为小时,两车之间的距离为千米,两者的关系如图所示,根据图象探究:(1)看图填空:两车出发小时,两车相遇;(2)求快车和慢车的速度;(3)求线段所表示的与的关系式,并求两车行驶小时两车相距多少千米.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

抽取的100件进行质检,发现其中有5件不合格,那么合格的有95件,由此即可求出这类产品的合格率是95%,然后利用样本估计总体的思想,即可知道合格率是95%,即可求出该厂这20万件产品中合格品的件数.【题目详解】∵某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,∴合格的有95件,∴合格率为95÷100=95%,∴估计该厂这20万件产品中合格品约为20×95%=19万件,故选C.【题目点拨】此题主要考查了样本估计总体的思想,此题利用样本的合格率去估计总体的合格率.2、B【解题分析】

先将括号内的数化简,再开根号,根据开方的结果为正数可得出答案.【题目详解】==2,故选:B.【题目点拨】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.3、C【解题分析】

根据一次函数的图象和性质可得a>0;b>0;当x>-2时,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集.【题目详解】解:由图象可知,a>0,故①正确;b>0,故②错误;当x>-2,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集,故③正确.故选:C.【题目点拨】本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.4、B【解题分析】

根据加权平均数的意义计算即可.【题目详解】解:小桐这学期的体育成绩:95×20%+90×30%+86×50%=89(分),故选:B.【题目点拨】本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.5、A【解题分析】

根据平行四边形的性质得BO=DO,所以OE是△ABC的中位线,根据三角形中位线定理三角形的中位线平行于第三边并且等于第三边的一半.【题目详解】解:在▱ABCD中,AC与BD相交于点O,

∴BO=DO,

∵点E是边BC的中点,

所以OE是△ABC的中位线,

∴OE=AB=1.

故选A.【题目点拨】本题利用平行四边形的性质和三角形的中位线定理求解,需要熟练掌握.6、A【解题分析】

连接BD、ND,由勾股定理得可得BD=4,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.【题目详解】连接BD、ND,由勾股定理得,BD==4,∵点E、F分别为DM、MN的中点,∴EF=DN,当DN最长时,EF长度的最大,∴当点N与点B重合时,DN最长,∴EF长度的最大值为BD=2,故选A.【题目点拨】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.7、A【解题分析】

根据平行四边形的性质推出OA=OC=AC,OB=OD=BD,求出每个选项中OA和OB的值,再判断OA、OB、AD的值是否能组成三角形即可.【题目详解】解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,

A、∵AC=10,BD=12,∴OA=5,OD=6,∵6-5<10<6+5,∴此时能组成三角形,故本选项符合题意;

B、∵AC=12,BD=32,∴OA=6,OD=16,∵16-6=10,∴此时不能组成三角形,故本选项不符合题意;

C、∵AC=6,BD=8,∴OA=3,OD=4,∵3+4<10,∴此时不能组成三角形,故本选项不符合题意;

D、∵AC=8,BD=10,∴OA=4,OD=5,∵4+5<10,∴此时不能组成三角形,故本选项不符合题意;故选:A.【题目点拨】本题考查了三角形的三边关系定理和平行四边形的性质,关键是判断OA、OB、AD的值是否符合三角形的三边关系定理.8、A【解题分析】

根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【题目详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选:A.【题目点拨】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9、B【解题分析】

首先根据DE是△ABC的中位线,可得△ADE∽△ABC,且DE:BC=1:2;然后根据相似三角形面积的比等于相似比的平方,求出△ADE与△ABC的面积之比是多少,进而求出△ADE与四边形DBCE的面积之比是多少即可.【题目详解】解:∵DE是△ABC的中位线,

∴△ADE∽△ABC,且DE:BC=1:2,

∴△ADE与△ABC的面积之比是1:4,

∴△ADE与四边形DBCE的面积之比是1:1.

故选:B.【题目点拨】(1)此题主要考查了三角形的中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.

(2)此题还考查了相似三角形的面积的比的求法,要熟练掌握,解答此题的关键是要明确:相似三角形面积的比等于相似比的平方.10、D【解题分析】

确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【题目详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【题目点拨】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.二、填空题(每小题3分,共24分)11、1【解题分析】

根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.【题目详解】正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,∵AC=∴正方形ABCD的面积两个直角三角形的面积和,∴正方形ABCD的面积=,故答案为:1.【题目点拨】此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.12、2【解题分析】

根据题意可知,该程序计算是将x代入y=−2x+1.将x=5输入即可求解.【题目详解】∵x=5>3,∴将x=5代入y=−2x+1,解得y=2.故答案为:2.【题目点拨】解题关键是弄清题意,根据题意把x的值代入,按程序一步一步计算.13、1【解题分析】

EF是△ABC的中位线,可得DE∥BC,又BD平分∠ABC交EF于D,则可证得等角,进一步可证得△BDE为等腰三角形,从而求出EB.【题目详解】解:∵EF是△ABC的中位线

∴EF∥BC,∠EDB=∠DBC

又∵BD平分∠ABC

∴∠EBD=∠DBC=∠EDB

∴EB=ED=1.

故答案为1.【题目点拨】本题考查的是三角形中位线的性质和等腰三角形的性质,比较简单.14、1.【解题分析】

根据矩形的性质、勾股定理求得长方形的宽,然后由矩形的面积公式解答.【题目详解】设该矩形的宽为x步,则对角线为(50﹣x)步,由勾股定理,得301+x1=(50﹣x)1,解得x=16故该矩形的面积=30×16=480(平方步),480平方步=1亩.故答案是:1.【题目点拨】考查了勾股定理的应用,此题利用方程思想求得矩形的宽.15、【解题分析】

根据图像即可得出答案.【题目详解】∵即的函数图像在的下方∴x>-2故答案为x>-2【题目点拨】本题考查的是一次函数,难度适中,需要熟练掌握一次函数的图像与性质.16、.【解题分析】

首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.【题目详解】解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,BBi,∵AO⊥AB1,AP⊥ABi,∴∠OAP=∠B1ABi,又∵AB1=AO•tan30°,ABi=AP•tan30°,∴AB1:AO=ABi:AP,∴△AB1Bi∽△AOP,∴∠B1Bi=∠AOP.同理得△AB1B2∽△AON,∴∠AB1B2=∠AOP,∴∠AB1Bi=∠AB1B2,∴点Bi在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).由图形2可知:Rt△APB1中,∠APB1=30°,∴Rt△AB2N中,∠ANB2=30°,∴∴∵∠PAB1=∠NAB2=90°,∴∠PAN=∠B1AB2,∴△APN∽△AB1B2,∴,∵ON:y=﹣x,∴△OMN是等腰直角三角形,∴OM=MN=,∴PN=,∴B1B2=,综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.故答案为:.【题目点拨】本题考查动点问题,用到了三角形的相似、和等腰三角形的性质,解题关键是找出图形中的相似三角形,利用对应边之比相等进行边长转换.17、a2bc.【解题分析】

解:观察得知,这三个分母都是单项式,确定这几个分式的最简公分母时,相同字母取次数最高的,不同字母连同它的指数都取着,系数取最小公倍数,所以它们的最简公分母是a2bc.故答案为:a2bc.考点:分式的通分.18、②③【解题分析】

根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.【题目详解】解:在菱形ABCD中,AC⊥BD,∴在Rt△AFP中,AF一定大于AP,故①错误;∵四边形ABCD是菱形,∴AD∥BC,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③【题目点拨】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.三、解答题(共66分)19、(1);(2)见解析;(3).【解题分析】

(1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;

(2)证△BAE≌△CAF即可得;

(3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB+CD可得答案.【题目详解】解:(1)如图1,连接AC,

∵四边形ABCD是菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∵E是BC中点,

∴AE⊥BC,BE=BC=AB

在Rt△ABE中,AE=BEtanB=BE;(2)证明:连接,如图2中,∵四边形是菱形,,∴与都是等边三角形,∴,.∵,∴,在和中,,∴.∴.(3)解:连接,过点作于点,如图3所示,∵,,∴.在中,∵,,∴,∴.在中,∵,,∴,∴.由(2)得,,则,∵,∴,可得,∴,∴.【题目点拨】考查四边形的综合问题,解题的关键是掌握菱形的性质、等边三角形与全等三角形的判定与性质等知识点.20、(1)y=x-2;(2)见解析.【解题分析】

(1)利用待定系数法进行求解即可;(2)将x=-4代入函数解析式,求出y的值,看是否等于6,由此即可作出判断.【题目详解】(1)设该函数解析式为y=kx+b,把点(2,1)和(0,-2)代入解析式得,解得k=,b=-2,∴该函数解析式为y=x-2;(2)当x=-4时,y=×(-4)-2=-8≠6,∴点(-4,6)不在该函数图象上.【题目点拨】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.21、(1)不变,252,理由见解析;(2)55或52或525;(3)y=-x+22(5≤【解题分析】

(1)由“SAS”可证△ABD≌△FHA,可得HF=AB=5,即可求△ABF的面积;(2)分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长;(3)由全等三角形的性质,DH=AB=5,EH=DB,可得y=EH+5=DB+5,x=12-DB+DH=17-DB,即可求y关于x的函数关系式.【题目详解】解:(1)作FH⊥AB交AB延长线于H,∵正方形ADEF中,AD=AF,∠DAF=90°,∴∠DAH+∠FAH=90°.∵∠H=90°,∴∠FAH+∠AFH=90°,∴∠DAH=∠AFH,∵矩形OABC中,AB=5,∠ABD=90°,∴∠ABD=∠H∴△ABD≌△FHA,∴FH=AB=5,∴S△AEF(2)①当EB=EF时,作EG⊥CB∵正方形ADEF中,ED=EF,∴ED=EB,∴DB=2DG,同(1)理得△ABD≌△GDE,∴DG=AB=5,∴DB=10,∴AD=B②当EB=BF时,∠BEF=∠BFE,∵正方形ADEF中,ED=AF,∠DEF=∠AFE=90°,∴∠BED=∠BFA,∴△ABF≌△DBE,∴BD=AB=5,∵矩形OABC中,∠ABD=90°,∴AD=B③当FB=FE时,作FQ⊥AB,同理得BQ=AQ=52,BD=AQ=5∴AD=B(3)当5≤x≤12时,如图,

由(2)可知DH=AB=5,EH=DB,且E(x,y),∴y=EH+5=DB+5,x=12-DB+DH=17-DB,∴y=22-x,当12<x≤17时,如图,

同理可得:x=12-DB+5=17-DB,y=DB+5,∴y=22-x,综上所述:当5≤x≤17时,y=22-xy=-x+22(5≤x≤17).【题目点拨】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.22、(1)(2)【解题分析】

(1)由四边形ABCD是平行四边形,∠F=62°,易求得∠BAE的度数,又由AB=BE,即可求得∠B的度数,然后由平形四边形的对角相等,即可求得∠D的度数;(2)根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.【题目详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAF=∠F=62°,∵AB=BE,∴∠AEB=∠BAE=62°,∴∠B=180°-∠BAE-∠AEB=56°,∵在平行四边形ABCD中,∠D=∠B,∴∠D=56°.(2)∵DC∥AB,∴△CEF∽△BEA.∵BE=3EC∴,∵S△EFC=1.∴S△ABE=9a,∵∴∴∴∵∴【题目点拨】此题考查了平行四边形的性质与相似三角形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.23、(1)证明见解析;(2)6.【解题分析】

(1)由AE是∠BAC的角平分线可得∠DAE=∠BAE,由DE∥AB,可得∠DEA=∠EAB,则∠DEA=∠DAE,可得结论.

(2)根据等腰三角形三线合一可得AE⊥BC,可证∠C=∠CED则CD=DE,即可求AC的长.【题目详解】证明:(1)∵AE是∠BAC的角平分线∴∠DAE=∠BAE,∵DE∥AB∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE-;(2)∵AB=AC,AE是∠BAC的角平分线∴AE⊥BC∴∠C+∠CAE=90°,∠CED+∠DEA=90°,∵∠CAE=∠DEA,∴∠C=∠CED,∴DE=CD,∴AD=DE=CD=3,∴AC=6.故答案为(1)证明见解析;(2)6.【题目点拨】本题考查等腰三角形的性质和判定,平行线的性质,关键是利用这些性质解决问题.24、CD=EF.【解题分析】

根据三角形的中位线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论