版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省杭州城区6学校数学八年级第二学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若一个三角形各边的长度都扩大2倍,则扩大后的三角形各角的度数都()A.缩小2倍 B.不变 C.扩大2倍 D.扩大4倍2.如图,矩形中,,,点从点出发,沿向终点匀速运动.设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是()A. B.C. D.3.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次 B.3次 C.2次 D.1次4.如果与最简二次根式是同类二次根式,则的值是()A. B. C. D.5.甲、乙两位射击运动员的10次射击练习成绩的折线统计图如图所示,则下列关于甲、乙这10次射击成绩的说法中正确的是()A.甲的成绩相对稳定,其方差小 B.乙的成绩相对稳定,其方差小C.甲的成绩相对稳定,其方差大 D.乙的成绩相对稳定,其方差大6.下列计算正确的是A. B. C. D.7.下列地铁标志图形中,属于中心对称图形的是()A. B. C. D.8.已知一次函数与反比例函数的图象相交于,两点,当时,实数的取值范围是()A.或 B.或C.或 D.9.如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为()A.7 B.6 C.5 D.410.如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.5 C.6 D.1011.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有()A.0个 B.1个 C.2个 D.3个12.下列几组数中,能作为直角三角形三边长度的是()A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,13二、填空题(每题4分,共24分)13.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则△BEC的面积=__________________14.已知,则yx的值为_____.15.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____16.廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时)432l0人数34111则这10名学生周末利用网络进行学习的平均时间是________小时.17.将点向右平移4个单位,再向下平移3个单位,则平移后点的坐标是__________.18.将点,向右平移个单位后与点关于轴对称,则点的坐标为______.三、解答题(共78分)19.(8分)如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.20.(8分)八年级(3)班同学为了解2020年某小区家庭1月份天然气使用情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:月均用气量x()频数(户)频率0<x≤1040.0810<x≤20a0.1220<x≤30160.3230<x≤4012b40<x≤50100.2050<x≤6020.04(1)求出a,b的值,并把频数分布直方图补充完整;(2)求月均用气量不超过30的家庭数占被调查家庭总数的百分比;(3)若该小区有600户家庭,根据调查数据估计,该小区月均用气量超过40的家庭大约有多少户?21.(8分)(1)(2)22.(10分)同学们,我们以前学过完全平方公式,你一定熟悉掌握了吧!现在,我们又学习了二次根式,那么所有非负数都可以看作是一个数的平方,如,,下面我们观察:;反之,;∴;∴.仿上例,求:(1);(2)若,则、与、的关系是什么?并说明理由.23.(10分)重庆不仅是网红城市,更是拥有长安,力帆等大型车企的一座汽车城,为了更好的推广和销售汽车,每年都会在悦来会展中心举办大型车展.去年该车展期间大众旗下两品牌汽车迈腾和途观L共计销售240辆,迈腾销售均价为每辆20万元,途观L销售均价为每辆30万元,两种车型去年车展期间销售额共计5600万元.(1)这两种车型在去年车展期间各销售了多少辆?(2)在今年的该车展上,各大汽车经销商纷纷采取降价促销手段,而途观L坚持不降价,与去年相比,销售均价不变,销量比去年车展期间减少了a%,而迈腾销售均价比去年降低了a%,销量较去年增加了2a%,两种车型今年车展期间销售总额与去年相同,求a的值.24.(10分)把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=10t﹣5t1.(1)经多少秒后足球回到地面?(1)试问足球的高度能否达到15米?请说明理由.25.(12分)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?26.某河道A,B两个码头之间有客轮和货轮通行一天,客轮从A码头匀速行驶到B码头,同时货轮从B码头出发,运送一批建材匀速行驶到A码头两船距B码头的距离千米与行驶时间分之间的函数关系如图所示请根据图象解决下列问题:分别求客轮和货轮距B码头的距离千米、千米与分之间的函数关系式;求点M的坐标,并写出该点坐标表示的实际意义.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】
由一个三角形各边的长度都扩大2倍,可得新三角形与原三角形相似,然后由相似三角形的对应角相等,求得答案.【题目详解】解:∵一个三角形各边的长度都扩大2倍,
∴新三角形与原三角形相似,
∴扩大后的三角形各角的度数都不变.
故选:B.【题目点拨】此题考查了相似三角形的判定与性质.注意根据题意得到新三角形与原三角形相似是解此题的关键.2、A【解题分析】
当点P在CD上运动时,如下图所示,连接AC,根据平行线之间的距离处处相等,可判断此时不变,且=S△ABC,根据三角形的面积公式即可得出结论.【题目详解】解:当点P在CD上运动时,如下图所示,连接AC根据平行线之间的距离处处相等,故此时的面积为不变,故可排除C、D此时=S△ABC=,故可排除B故选A.【题目点拨】此题考查的是函数的图象,掌握函数图象中横纵坐标的意义和平行线之间的距离处处相等是解决此题的关键.3、B【解题分析】
试题解析:∵四边形ABCD是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;
第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;
第三次PD=QB时,Q运动一个来回后从C到B,12-t=31-4t,解得t=8;
第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-31,解得t=9.1.
∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,
故选:B.考点:平行四边形的判定与性质4、B【解题分析】
根据同类二次根式的定义得出5+a=3,求出即可.【题目详解】∵与最简二次根式是同类二次根式,,∴5+a=3,解得:a=﹣1.故选B.【题目点拨】本题考查了同类二次根式和最简二次根式,能根据同类二次根式的定义得出5+a=3是解答此题的关键.5、B【解题分析】
结合图形,乙的成绩波动比较小,则波动大的方差就小.【题目详解】从图看出:乙选手的成绩波动较小,说明它的成绩较稳定的,甲的波动较大,则其方差大.故选:.【题目点拨】此题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、A【解题分析】A.,故正确;B.,故不正确;C.,故不正确;D.,故不正确;故选A.7、C【解题分析】
根据中心对称图形的定义即可作出判断.【题目详解】A、不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、不是中心对称图形,故选项错误.故选C.【题目点拨】本题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、C【解题分析】
由函数图像可得y1>y2时,一次函数图象在反比例函数图象的上方,即可确定答案.【题目详解】解:当,表示一次函数图象在反比例函数图象上方时的取值范围,由题图可知或.故答案为C.【题目点拨】本题主要考查一次函数和不等式的关系,理解函数图像与不等式解集的关系是解答本题的关键.9、B【解题分析】
根据平移的性质分别求出a、b的值,计算即可.【题目详解】解:点A的横坐标为-1,点C的横坐标为1,则线段AB先向右平移2个单位,∵点B的横坐标为1,∴点D的横坐标为3,即b=3,同理,a=3,∴a+b=3+3=6,故选:B.【题目点拨】本题考查的是坐标与图形变化-平移,掌握平移变换与坐标变化之间的规律是解题的关键.10、B【解题分析】
∵AD平分∠CAB,
∴点B关于AD的对称点B′在线段AC上,作B′N′⊥AB于N′交AD于M′.
∵BM+MN=B′M+MN,
∴当M与M′重合,N与N′重合时,BM+MN的值最小,最小值为B′N′,
∵AD垂直平分BB′,
∴AB′=AB=1,
∵∠B′AN′=41°,
∴△AB′N′是等腰直角三角形,
∴B′N′=1
∴BM+MN的最小值为1.
故选B.【题目点拨】本题考查轴对称-最短问题、垂线段最短、等腰直角三角形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.11、D【解题分析】
依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【题目详解】解:∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
在△APE和△AME中,
∠BAC=∠DAC
AE=AE
∠AEP=∠AEM,
∴△APE≌△AME(ASA),故①正确;
∴PE=EM=PM,
同理,FP=FN=NP.
∵正方形ABCD中,AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,FP=FN=NP,OA=AC,
∴PM+PN=AC,∴PM+PN=BD;故②正确;
∵四边形ABCD是矩形,
∴AC⊥BD,
∴∠AOB=90°,
∵PE⊥AC,PF⊥BD,
∴∠OEP=∠EOF=∠OFP=90°,
∴四边形PEOF是矩形,
∴OE=PF,OF=PE,
在直角△OPF中,OE²+PE²=PO²,
∴PE²+PF²=PO²,故③正确;∴正确的有3个,故选:D【题目点拨】本题是正方形的性质、矩形的判定、勾股定理的综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.12、D【解题分析】
欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【题目详解】解:A、22+32≠42,故不是直角三角形,故错误;B、42+52≠62,故不是直角三角形,故错误;C、62+82≠112,故不是直角三角形,故错误;D、52+122=132,故是直角三角形,故正确.故选D.二、填空题(每题4分,共24分)13、.【解题分析】
过B作BP⊥AD于P,BQ⊥AC于Q,依据∠BAD=∠BAC,即AB平分∠DAC,可得BP=BQ,进而得出BP=,AD=,S△ABD=AD×BP=,再根据△ABD∽△CBE,可得,即可得到S△CBE=.【题目详解】如图,过B作BP⊥AD于P,BQ⊥AC于Q,由旋转可得,∠CAB=∠D,BD=BA=3,∴∠D=∠BAD,∴∠BAD=∠BAC,即AB平分∠DAC,∴BP=BQ,又∵Rt△ABC中,AB=3,BC=4,∴AC=5,BQ=,∴BP=,∴Rt△ABP中,AP=,∴AD=,∴S△ABD=AD×BP=,由旋转可得,∠ABD=∠CBE,DB=AB,EB=CB,∴△ABD∽△CBE,∴,即,解得S△CBE=,故答案为.【题目点拨】此题考查了旋转的性质、等腰三角形的性质以及相似三角形的判定与性质.此题注意掌握旋转前后图形的对应关系,注意相似三角形的面积之比等于相似比的平方.14、-1
【解题分析】
根据二次根式的被开方数为非负数列不等式组解得x值,将x代入原式解得y值,即可求解.【题目详解】要使有意义,则:,解得:x=1,代入原式中,得:y=﹣1,∴yx=(-1)1=-1,故答案为:-1.【题目点拨】本题考查二次根式有意义的条件、解一元一次不等式组、幂的乘方,熟练掌握二次根式的被开方数为非负数是解答的关键.15、4【解题分析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【题目详解】∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,∴BC=1DF=1.又∵∠ABC=90°,∴AB==.∵平行四边形DBEC是菱形,∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,故答案为4.【题目点拨】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.16、2.1【解题分析】
依据加权平均数的概念求解可得.【题目详解】解:这10名学生周末利用网络进行学习的平均时间是:;故答案为:2.1.【题目点拨】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.17、(3,-1)【解题分析】
直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【题目详解】将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,
则平移后点的坐标是(-1+4,2-3),即(3,-1),
故答案为:(3,-1).【题目点拨】此题考查坐标与图形变化-平移,解题关键在于掌握左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.18、(4,-3)【解题分析】
让点A的纵坐标不变,横坐标加4即可得到平移后的坐标;关于x轴对称的点即让横坐标不变,纵坐标互为相反数即可得到点的坐标.【题目详解】将点A向右平移4个单位后,横坐标为0+4=4,纵坐标为3∴平移后的坐标是(4,3)∵平移后关于x轴对称的点的横坐标为4,纵坐标为-3∴它关于x轴对称的点的坐标是(4,-3)【题目点拨】此题考查点的平移,关于x轴对称点的坐标特征,解题关键在于掌握知识点三、解答题(共78分)19、(1)证明见解析;(2)对补点如:N(,).证明见解析【解题分析】试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC=∠AMB=90°,从而得到点M是正方形ABCD的对补点.(2)在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可,通过证明△DCN≌△BCN,得到∠CND=∠CNB,利用邻补角的性质即可得出结论.试题解析:(1)∵四边形ABCD是正方形,∴AC⊥BD.∴∠DMC=∠AMB=90°.即∠DMC+∠AMB=180°.∴点M是正方形ABCD的对补点.(2)对补点如:N(,).说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可.证明(方法一):连接AC,BD由(1)得此时对角线的交点为(2,2).设直线AC的解析式为:y=kx+b,把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.则点N(,)是直线AC上除对角线交点外的一点,且在正方形ABCD内.连接AC,DN,BN,∵四边形ABCD是正方形,∴DC=BC,∠DCN=∠BCN.又∵CN=CN,∴△DCN≌△BCN.∴∠CND=∠CNB.∵∠CNB+∠ANB=180°,∴∠CND+∠ANB=180°.∴点N是正方形ABCD的对补点.证明(方法二):连接AC,BD,由(1)得此时对角线的交点为(2,2).设点N是线段AC上的一点(端点A,C及对角线交点除外),连接AC,DN,BN,∵四边形ABCD是正方形,∴DC=BC,∠DCN=∠BCN.又∵CN=CN,∴△DCN≌△BCN.∴∠CND=∠CNB.∵∠CNB+∠ANB=180°,∴∠CND+∠ANB=180°.∴点N是正方形ABCD除对角线交点外的对补点.设直线AC的解析式为:y=kx+b,把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.在1<x<3范围内,任取一点均为该正方形的对补点,如N(,).20、(1)6,,图见解析;(2);(3)1.【解题分析】
(1)先求出随机调查的家庭总户数,再根据“频数频率总数”可求出a的值,根据“频率频数总数”可求出b的值,然后补全频数分布直方图即可;(2)根据总户数和频数分布表中“月均用气量不超过的家庭数”即可得;(3)先求出“小区月均用气量超过的家庭”的占比,再乘以600即可得.【题目详解】(1)随机调查的家庭总户数为(户)则补全频率分布直方图如下所示:(2)月均用气量不超过的家庭数为(户)则答:月均用气量不超过30的家庭数占被调查家庭总数的百分比为;(3)小区月均用气量超过的家庭占比为则(户)答:该小区月均用气量超过40的家庭大约有1户.【题目点拨】本题考查了频数分布表和频数分布直方图,掌握理解频数分布表和频数分布直方图是解题关键.21、(1)x1=−3,x2=3;(2)x1=,x2=1.【解题分析】
(1)先移项得到2x(x+3)−6(x+3)=0,然后利用因式分解法解方程;
(2)先把方程整理为一般式,然后利用因式分解法解方程.【题目详解】解:(1)2x(x+3)−6(x+3)=0,
(x+3)(2x−6)=0,
x+3=0或2x−6=0,
所以x1=−3,x2=3;
(2)2x2+3x−5=0,
(2x+5)(x−1)=0,
2x+5=0或x−1=0,
所以x1=,x2=1.【题目点拨】本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.22、(1);(2),.理由见解析.【解题分析】
(1)根据阅读材料即可求解;(2)根据阅读材料两边同时平方即可求解.【题目详解】(1);(2),;∵,∴,∴,∴,.【题目点拨】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则.23、(1)去年车展期间迈腾销售了160辆,途观L销售了80辆;(2)a的值为12.1.【解题分析】
(1)设去年车展期间迈腾销售了x辆,途观L销售了y辆,然后根据题意列出二元一次方程组,解方程组即可;(2)根据题意,分别利用销售额=销售单价×销售量计算出迈腾和途观今年的销售额,然后列出方程,解方程即可.【题目详解】(1)设去年车展
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度旅游旺季临时导游劳务合同范本4篇
- 2025年度个人果园绿色种植与农产品溯源服务合同4篇
- 2025年度木工产品包装设计与印刷合同3篇
- 二零二五年度室内木门翻新与维修服务合同范本4篇
- 2025版煤炭行业人力资源培训与合作合同4篇
- 2025年度美发行业技师技能认证与培训合同4篇
- 二零二五年度木饰面原材料质量控制与认证合同3篇
- 2025年临时企业灵活劳务外包协议
- 2025年家族遗产继承公约规划协议
- 2025年合同追偿协议
- 医学脂质的构成功能及分析专题课件
- 高技能人才培养的策略创新与实践路径
- 2024年湖北省知名中小学教联体联盟中考语文一模试卷
- 2024年湖北省中考数学试卷(含答案)
- 油烟机清洗安全合同协议书
- 2024年云南省中考数学试题(原卷版)
- 污水土地处理系统中双酚A和雌激素的去除及微生物研究
- 气胸病人的护理幻灯片
- 《地下建筑结构》第二版(朱合华)中文(2)课件
- JB T 7946.1-2017铸造铝合金金相
- 包装过程质量控制
评论
0/150
提交评论