版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市巢湖第三中学2024届数学八下期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在四边形中,是边的中点,连接并延长,交的延长线于点,.添加一个条件使四边形是平行四边形,你认为下面四个条件中可选择的是()A. B. C. D.2.下列二次根式中属于最简二次根式的是()A. B. C. D.3.把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n=8,则直线AB的表达式为()A.y=﹣2x+4 B.y=﹣2x+8 C.y=﹣2x﹣4 D.y=﹣2x﹣84.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<45.某班数学兴趣小组8名同学的毕业升学体育测试成绩依次为:30,29,28,27,28,29,30,28,这组数据的众数是()A.27 B.28 C.29 D.306.一次函数y=x+b的图像经过A(2,y1),B(4,y2),则y1和y2的大小关系为()A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y27.下列根式中,不能与合并的是()A. B. C. D.8.已知一个直角三角形的两边长分别为3和4,则第三边长为()A.5 B.7 C. D.或59.下列由左边到右边的变形,属于因式分解的是()A. B.C. D.10.多项式x2m﹣xm提取公因式xm后,另一个因式是()A.x2﹣1 B.xm﹣1 C.xm D.x2m﹣1二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,过点分别作轴于点,轴于点,、分别交反比例函数的图像于点、,则四边形的面积为__________.12.一种什锦糖由价格为12元/千克,18元/千克的两种糖果混合而成,两种糖果的比例是2:1,则什锦糖的每千克的价格为_____________13.计算的结果是.14.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.15.如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为_______.16.如图,在平行四边形中,对角线相交于点,且.已知,则____.17.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.18.计算:(﹣4ab2)2÷(2a2b)0=_____.三、解答题(共66分)19.(10分)课堂上老师讲解了比较和的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:,,因为>,所以>,则有<.请你设计一种方法比较与的大小.20.(6分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.(1)请依据图表中的数据,求a,b的值.(2)直接写出表中的m=,n=.(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.21.(6分)考虑下面两种移动电话计费方式方式一方式二月租费(月/元)300本地通话费(元/分钟)0.300.40(1)直接写出两种计费方式的费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式.(2)求出两种计费方式费用相等的本地通话时间是多少分钟.22.(8分)某中学课外兴趣活动小组准备围建一个矩形的苗圃圆.其中一边靠墙,另外三边用长为40m的篱笆围成.已知墙长为18m(如图所示),设这个苗圃园垂直于墙的一边AB为xm(1)用含有x的式子表示AD,并写出x的取值范围;(2)若苗圃园的面积为192m2平方米,求AB的长度.23.(8分)如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=1.动点P以每秒2个单位的速度从点A出发,沿AC向点C匀速运动.同时,动点Q以每秒1个单位的速度从点D出发,沿DB向点B匀速运动.当其中有一点列达终点时,另一点也停止运动,设运动的时间为t秒.(1)求线段DO的长;(2)设运动过程中△POQ两直角边的和为y,请求出y关于t的函数解析式;(3)请直接写出点P在线段OC上,点Q在线段DO上运动时,△POQ面积的最大值,并写出此时的t值.24.(8分)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y(℃)与开机时间x(分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y(℃)与开机时间x(分)成反比例关系),当水温降至20℃时,饮水机又自动开始加热,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?25.(10分)阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小明:那直角三角形是否存在奇异三角形呢?小红:等边三角形一定是奇异三角形.(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是.(填“真命题”或“假命题”)(2)若是奇异三角形,其中两边的长分别为、,则第三边的长为.(3)如图,中,,以为斜边作等腰直角三角形,点是上方的一点,且满足.求证:是奇异三角形.26.(10分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【题目详解】添加A、,无法得到AD∥BC或CD=BA,故错误;添加B、,无法得到CD∥BA或,故错误;添加C、,无法得到,故错误;添加D、∵,,,∴,,∴,∵,∴,∴四边形是平行四边形.故选D.【题目点拨】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.2、A【解题分析】
根据最简二次根式的定义和化简方法将二次根式化简成最简二次根式即可.【题目详解】如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.那么,这个根式叫做最简二次根式.只有A符合定义.故答案选A【题目点拨】本题主要考查二次根式的化简和计算,解决本题的关键是熟练掌握二次根式的化简方法.3、B【解题分析】
由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.【题目详解】解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其斜率不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=1③把③代入②,解得y=﹣2x+1,即直线AB的解析式为y=﹣2x+1.故选:B.【题目点拨】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.4、C【解题分析】
直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.【题目详解】解:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为,∵交点在第一象限,∴,解得:m>1.故选:C.【题目点拨】本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横坐标大于2、纵坐标大于2.5、B【解题分析】分析:根据出现次数最多的数是众数解答.详解:27出现1次;1出现3次;29出现2次;30出现2次;所以,众数是1.故选B.点睛:本题考查了众数的定义,熟记出现次数最多的是众数是解题的关键.6、C【解题分析】
将点A,点B坐标代入解析式,可求y1,y2,由不等式的性质可得y1、y2的大小关系.【题目详解】解:∵一次函数y=x+b图象上的两点A(2,y1),B(4,y2),
∴y1=2+b,y2=4+b
∵4>2
∴4+b>2+b
∴y1<y2,
故选C.【题目点拨】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数图象的解析式是本题的关键.7、C【解题分析】
解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选C.考点:同类二次根式.8、D【解题分析】分两种情况:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为,故选D.9、D【解题分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【题目详解】解:A、右边不是积的形式,故本选项错误;
B、右边不是积的形式,故本选项错误;
C、x2-4y2=(x+2y)(x-2y),故本项错误;
D、是因式分解,故本选项正确.
故选:D.【题目点拨】此题考查因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10、B【解题分析】
根据多项式提取公因式的方法计算即可.【题目详解】解:x2m﹣xm=xm(xm-1)所以另一个因式为xm-1故选B【题目点拨】本题主要考查因式分解,关键在于公因式的提取.二、填空题(每小题3分,共24分)11、1【解题分析】
根据反比例函数系数k的几何意义可得S△DBO=S△AOC=|k|=1,再利用矩形OCPD的面积减去△BDO和△CAO的面积即可.【题目详解】解:∵B、A两点在反比例函数的图象上,∴S△DBO=S△AOC=×2=1,∵P(2,3),∴四边形DPCO的面积为2×3=6,∴四边形BOAP的面积为6﹣1﹣1=1,故答案为:1.【题目点拨】此题主要考查了反比例函数k的几何意义,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.12、14元/千克【解题分析】
依据这种什锦糖总价除以总的千克数,即可得到什锦糖每千克的价格.【题目详解】解:由题可得,这种什锦糖的价格为:,故答案为:14元/千克.【题目点拨】本题主要考查了算术平均数,对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.13、1.【解题分析】
.故答案为1.14、y=-x+1.【解题分析】
根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【题目详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【题目点拨】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.15、1【解题分析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.【题目详解】解:∵,,根据勾股定理得,∵四边形是平行四边形,,∴当取最小值时,线段最短,即时最短,是的中位线,,,故答案为:1.【题目点拨】本题考查了平行四边形的性质,勾股定理以及垂线段最短,此题难度适中,注意掌握数形结合思想的应用.16、【解题分析】
直接构造直角三角形,再利用平行四边形的性质结合勾股定理得出AC的长,利用平行四边形的性质求得AO的长即可.【题目详解】解:延长CB,过点A作AE⊥CB交于点E,∵四边形ABCD是平行四边形,∴AB=DC=5,BC=AD=3,DC∥AB,∵AD⊥CB,AB=5,BC=3,∴BD=4,∵DC∥AB,∠ADB=90°,∴∠DAB=90°,可得:∠ADB=∠DAE=∠ABE=90°,则四边形ADBE是矩形,故DB=EA=4,∴CE=6,∴AC=,∴AO=.故答案为:.【题目点拨】此题主要考查了勾股定理以及平行四边形的性质,正确作出辅助线是解题关键.17、y=x+3【解题分析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【题目点拨】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).18、16a2b1【解题分析】
直接利用整式的除法运算法则以及积的乘方运算法则计算得出答案.【题目详解】解:(-1ab2)2÷(2a2b)0=16a2b1÷1=16a2b1,故答案为:16a2b1.【题目点拨】本题主要考查了整式的乘除运算和零指数幂,正确掌握相关运算法则是解题关键.三、解答题(共66分)19、方法见解析.【解题分析】【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.【题目详解】
,,∵,∴,∵,,∴.【题目点拨】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.20、(1)a=5,b=1;(2)m=6,n=20%;(3)答案见解析.【解题分析】试题分析:(1)根据题意可以得到关于a、b的方程组,从而可以求得a、b的值;(2)根据表格可以得到m和n的值;(3)根据表格中的平均数和中位数进行说明即可解答本题.试题解析:解:(1)由题意和图表中的数据,可得:,即,解得:;(2)七年级的中位数m=6,优秀率n=2÷10=20%;(3)八年级队成绩比七年级队好的理由:①八年级队的平均分比七年级队高,说明八年级队总成绩比七年级队的总成绩好.②中位数七年级队是6,八年级队是7.5,说明八年级队半数以上的学生比七年级队半数以上的成绩好.点睛:本题考查条形统计图、中位数、方差,解题的关键是明确题意,找出所求问题需要的条件.21、(1)方式一y=0.3x+30,方式二y=0.4x;(2)300分钟.【解题分析】
(1)根据图表中两种计费方式的费用y关于本地通话时间x的关系,直接写出即可;(2)令两种方式中的函数解析式相等即可求出x.【题目详解】解:(1)由题意可得,方式一:y=30+0.3x=0.3x+30,方式二:y=0.4x,即方式一中费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式是y=0.3x+30,方式二中费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式是y=0.4x;(2)令0.3x+30=0.4x,解得,x=300,答:两种计费方式费用相等的本地通话时间是300分钟.【题目点拨】一次函数在实际生活中的应用是本题的考点,根据题意列出函数解析式是解题的关键.22、(1)AD=40-2x.11≤x<1.(2)若苗圃园的面积为192平方米,则AB的长度为12米.【解题分析】
(1)由矩形的周长公式求得AD的长度;由AD长度意义求得x的取值范围;(2)根据矩形的面积公式,即可得出关于x的一元二次方程,解之即可得出x的值,再由(1)中x的取值范围即可确定x的值.【题目详解】(1)AD=40-2x,∵0<40-2x≤18,∴x的取值范围为:11≤x<1;(2)根据题意得:x(40-2x)=192,整理,得x2-1x+96=0,解得:x1=8,x2=12,∵11≤x<1,当x=8时,40-2x=40-16=24>18,∴不合题意,舍去;∴x=12,即AB的长度为12,答:若苗圃园的面积为192平方米,则AB的长度为12米.【题目点拨】本题考查了一元二次方程的应用、矩形的面积以及一次函数的应用,解题的关键是:(1)根据篱笆长度得出用含有x的式子表示BC的式子;(2)利用矩形的面积公式,找出关于x的一元二次方程.23、(1)2(2)见解析(3)当t=152【解题分析】
(1)根据菱形的对角线互相垂直平分的性质得到直角△AOD,在该直角三角形中利用勾股定理来求线段DO的长度;(2)需要分类讨论:点P在线段OA上、点Q在线段OD上;点P在线段OC上,点Q在线段OD上;点P在线段OC上,点Q在线段OB上;(3)由6<t≤2时OP=1﹣2t、OQ=2﹣t可得△POQ的面积S=12(2﹣t)(1﹣2t)=﹣t2+15t﹣54=﹣(t﹣152)2+【题目详解】(1)∵四边形ABCD是菱形,∴AC⊥BD.在Rt△AOD中,AD=15,AO=1由勾股定理得:OD=AD2-A(2)①当0≤t≤6时,OP=1﹣2t,OQ=2﹣t,则OP+OQ=1﹣2t+2﹣t=﹣3t+21即:y=﹣3t+21;②当6<t≤2时,OP=2t﹣1,OQ=2﹣t,则OP+OQ=2t﹣1+2﹣t=t﹣3即:y=t﹣3;③当2<t≤1时,OP=2t﹣1,OQ=t﹣2,则OP+OQ=2t﹣1+t﹣2=3t﹣21即:y=3t﹣21;综上所述:y=-3t+21(0⩽t⩽6)(3)如图,当6<t≤2时,∵OP=1﹣2t、OQ=2﹣t,∴△POQ的面积S=12(2﹣t)(1﹣2t=﹣t2+15t﹣54=﹣(t﹣152)2+9∴当t=152时,△POQ【题目点拨】本题主要考查四边形的综合问题,解题的关键是熟练掌握菱形的性质、二次函数的应用及分类讨论思想的运用.24、(1)y=8x+20;(2)t=50;(3)饮水机内的温度约为76℃【解题分析】
(1)利用待定系数法代入函数解析式求出即可;(2)首先求出反比例函数解析式进而得出t的值;(3)利用已知由x=7代入求出饮水机内的温度即可.【题目详解】解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,依据题意,得,解得:,故此函数解析式为:y=8x+20;(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,依据题意,得:100=,即m=1000,故y=,当y=20时,20=,解得:t=50;(3)∵57-50=7≤10,∴当x=7时,y=8×7+20=76,答:小明散步57分钟回到家时,饮水机内的温度约为76℃.【题目点拨】此题主要考查了一次函数以及反比例函数的应用,根据题意得出正确的函数解析式是解题关键.25、(1)真命题;(2);(3)见解析【解题分析】分析:(1)根据题中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度家具采购合同范本
- 2024年度安置补偿及购房合同
- 2024年度专利实施许可合同的专利实施范围与许可条件
- 运载工具刹车测试仪市场环境与对策分析
- 化妆用按摩霜市场发展现状调查及供需格局分析预测报告
- 2024年度教育培训项目合作承包合同
- 2024年度林地种植基地建设承包合同
- 2024年度混凝土工程设计变更合同
- 绘画板画家用品市场发展预测和趋势分析
- 窗帘滚轴市场需求与消费特点分析
- 国开(内蒙古)2024年《创新创业教育基础》形考任务1-3终考任务答案
- 2024入团知识题库(含答案)
- 第八章学校体育管理PPT课件
- 海洋立管课程概述.
- 工程结算单(样本)
- 海纳330kV变电站二次调试大纲
- Q∕CR 516-2016 铁路运营隧道结构状态检测技术要求及方法
- 水肥一体化施工组织设计
- 项目经理答辩题
- 拆船业安全隐患及防范措施_1
- 全市矿业经济工作会议讲话
评论
0/150
提交评论