山东青岛崂山区2024届数学八下期末学业水平测试模拟试题含解析_第1页
山东青岛崂山区2024届数学八下期末学业水平测试模拟试题含解析_第2页
山东青岛崂山区2024届数学八下期末学业水平测试模拟试题含解析_第3页
山东青岛崂山区2024届数学八下期末学业水平测试模拟试题含解析_第4页
山东青岛崂山区2024届数学八下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东青岛崂山区2024届数学八下期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下表是校女子排球队12名队员的年龄分布:年龄(岁)13141516人数(名)1452则关于这12名队员的年龄的说法正确的是()A.中位数是14 B.中位数是14.5 C.众数是15 D.众数是52.设,,且,则的值是()A. B. C. D.3.下列四个多项式中,能因式分解的是()A.a2+1 B.a2-6a+9 C.x2+5y D.x2-5y4.某机械厂七月份生产零件50万个,计划八、九月份共生产零件万个,设八、九月份平均每月的增长率为x,那么x满足的方程是A. B.C. D.5.如果平行四边形两条对角线的长度分别为,那么边的长度可能是()A. B. C. D.6.方程x(x-2)=0的根是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=-27.如图为一△ABC,其中D.E两点分别在AB、AC上,且AD=31,DB=29,AE=30,EC=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,下列何者正确?()A.∠1>∠3 B.∠2=∠4 C.∠1>∠4 D.∠2=∠38.后面的式子中(1);(2);(3);(4);(5);(6);二次根式的个数有().A.2个 B.3个 C.4个 D.5个9.函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠210.如图,直线y=﹣x+4与x轴、y轴分别交于点A、B、C是线段AB上一点,四边形OADC是菱形,则OD的长为()A.4.2 B.4.8 C.5.4 D.6二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),直角坐标系中存在点C,使得O,A,B,C四点构成平行四边形,则C点的坐标为______________________________.

12.若正n边形的内角和等于它的外角和,则边数n为_____.13.若函数y=x﹣1与的图象的交点坐标为(m,n),则的值为_____.14.若分式方程无解,则等于___________15.已知点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,则(a+b)2014=_____.16.化简3﹣2=_____.17.已知四边形ABCD为菱形,其边长为6,,点P在菱形的边AD、CD及对角线AC上运动,当时,则DP的长为________.18.使代数式有意义的的取值范围是________.三、解答题(共66分)19.(10分)如图,两个全等的Rt△AOB、Rt△OCD分别位于第二、第一象限,∠ABO=∠ODC=90°,OB、OD在x轴上,且∠AOB=30°,AB=1.(1)如图1中Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转度,再绕斜边中点旋转度得到的,C点的坐标是;(2)是否存在点E,使得以C、O、D、E为顶点的四边形是平行四边形,若存在,写出E点的坐标;若不存在请说明理由.(3)如图2将△AOC沿AC翻折,O点的对应点落在P点处,求P点的坐标.20.(6分)为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:(1)填空:a=,b=;(2)求这所学校平均每班贫困学生人数;(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.贫困学生人数班级数1名52名23名a5名121.(6分)如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB//DC,AC=10,BD=1.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.22.(8分)如图,▱ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.(1)求证:四边形BFDE是平行四边形;(2)若∠AEB=68°,求∠C.23.(8分)已知,直线y=2x-2与x轴交于点A,与y轴交于点B.(1)如图①,点A的坐标为_______,点B的坐标为_______;(2)如图②,点C是直线AB上不同于点B的点,且CA=AB.①求点C的坐标;②过动点P(m,0)且垂直与x轴的直线与直线AB交于点E,若点E不在线段BC上,则m的取值范围是_______;(3)若∠ABN=45º,求直线BN的解析式.24.(8分)如图,在▱ABCD中,E、F分别是对角线BD上的两点.且BF=DE,求证:AF=CE.25.(10分)某市在城中村改造中,需要种植、两种不同的树苗共棵,经招标,承包商以万元的报价中标承包了这项工程,根据调查及相关资料表明,、两种树苗的成本价及成活率如表:品种购买价(元/棵)成活率设种植种树苗棵,承包商获得的利润为元.()求与之间的函数关系式.()政府要求栽植这批树苗的成活率不低于,承包商应如何选种树苗才能获得最大利润?最大利润是多少?26.(10分)如图,在4×3正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画线段EF,使得EF的长为,以AB,CD,EF三条线段能否构成直角三角形,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

根据众数、中位数的定义逐一计算即可判断.【题目详解】观察图表可知:人数最多的是5人,年龄是1岁,故众数是1.共12人,中位数是第6,7个人平均年龄,因而中位数是1.故选:.【题目点拨】本题主要考查众数、中位数,熟练掌握众数、中位数的定义是解题的关键.2、C【解题分析】

将变形后可分解为:(−5)(+3)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【题目详解】由题意得:a+=3+15b,∴(−5)(+3)=0,故可得:=5,a=25b,∴=.故选C.【题目点拨】本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.3、B【解题分析】

根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【题目详解】A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B是完全平方公式的形式,故B能分解因式;故选B.4、C【解题分析】

主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【题目详解】依题意得八、九月份的产量为10(1+x)、10(1+x)2,∴10(1+x)+10(1+x)2=111.1.故选C.【题目点拨】本题考查了由实际问题抽象出一元二次方程.增长率问题的一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.5、B【解题分析】

根据平行四边形的对角线互相平分确定对角线的一半的长,然后利用三角形的三边关系确定边长的取值范围,从该范围内找到一个合适的长度即可.【题目详解】设平行四边形ABCD的对角线交于O点,∴OA=OC=4,OB=OD=6,∴6-4<BC<6+4,∴2<BC<10,∴6cm符合,故选:B.【题目点拨】考查了三角形的三边关系及平行四边形的性质,解题的关键是确定对角线的一半并根据三边关系确定边长的取值范围,难度不大.6、C【解题分析】试题分析:∵x(x-1)=0∴x=0或x-1=0,解得:x1=0,x1=1.故选C.考点:解一元二次方程-因式分解法.7、D【解题分析】

本题需先根据已知条件得出AD与AC的比值,AE与AB的比值,从而得出△ADE∽△ACB,最后即可求出结果.【题目详解】∵AD=31,BD=29,AE=30,EC=32,∴AB=31+29=60,AC=30+32=62,∴,,∴,∵∠A=∠A,∴△ADE∽△ACB,∴∠2=∠3,∠1=∠4,故选:D.【题目点拨】此题考查相似三角形的判定与性质,解题关键在于得出AD与AC的比值8、B【解题分析】

根据二次根式的定义:一般地,我们把形如的式子叫做二次根式可得答案.【题目详解】解:根据二次根式的定义:(1);(3);(5)是二次根式,而(2)中被开方数-3<0,不是二次根式,(4)是立方根,不是二次根式,(6)中因,故被开方数,不是二次根式;综上只有3个是二次根式;故选B.【题目点拨】此题主要考查了二次根式定义,关键是掌握被开方数是非负数.9、C【解题分析】解:由题意得:4﹣1x≥0,解得:x≤1.故选C.10、B【解题分析】

由直线的解析式可求出点B、A的坐标,进而可求出OA、OB的长,再利用勾股定理即可求出AB的长,由菱形的性质可得OE⊥AB,OE=DE,再根据直角三角形的面积可求出OE的长,进而可求出OD的长.【题目详解】解:∵直线y=﹣x+4与x轴、y轴分别交于点A、B,∴点A(3,0)、点B(0,4),∴OA=3,OB=4,∴AB=,∵四边形OADC是菱形,

∴OE⊥AB,OE=DE,由直角三角形的面积得,即3×4=5×OE.解得:OE=2.4,∴OD=2OE=4.8.故选B.【题目点拨】本题考查了菱形的性质和一次函数与坐标轴的交点问题,难度不大,题目设计新颖,解题的关键是把求OD的长转化为求直角△AOB斜边上的高OE的长的2倍.二、填空题(每小题3分,共24分)11、(3,4)或(1,-2)或(-1,2)【解题分析】

由平行四边形的性质:平行四边形的对边平行且相等,即可求得点C的坐标;注意三种情况.【题目详解】如图所示:∵以O、A、B、C为顶点的四边形是平行四边形,O(0,0),A(1,3),B(2,0),

∴三种情况:

①当AB为对角线时,点C的坐标为(3,4);

②当OB为对角线时,点C的坐标为(1,-2);

③当OA为对角线时,点C的坐标为(-1,2);

故答案是:(3,4)或(1,-2)或(-1,2).【题目点拨】考查了平行四边形的性质:平行四边形的对边平行且相等.解题的关键是要注意数形结合思想的应用.12、1【解题分析】

设这个多边形的边数为n,则依题意可列出方程(n﹣2)×180°=360°,从得出答案.【题目详解】解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°,解得,n=1.故答案为:1.【题目点拨】本题考查的知识点是正多边形的内角和与外角和,熟记正多边形内角和的计算公式是解此题的关键.13、【解题分析】

有两函数的交点为(m,n),将(m,n)代入一次函数与反比例函数解析式中得到mn与n-m的值,所求式子通分并利用同分母分式的减法法则计算,将各自的值代入计算即可求出值.【题目详解】解:∵函数y=x﹣1与的图象的交点坐标为(m,n),∴将x=m,y=n代入反比例解析式得:n=,即mn=2,代入一次函数解析式得:n=m﹣1,即n﹣m=﹣1,∴,故答案为﹣.【题目点拨】此题考查反比例函数与一次函数的交点问题,解题关键在于把交点代入解析式14、【解题分析】

先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.【题目详解】解:,去分母得:,所以:,因为:方程的增根是,所以:此时,故答案为:.【题目点拨】本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.15、1【解题分析】

关于x轴对称的点,横坐标相同,纵坐标互为相反数,可求出a,b,得到答案.【题目详解】解:点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,得a﹣1=2,b﹣1=﹣5,解得a=3,b=﹣4,(a+b)2014=(﹣1)2014=1,故答案为:1.【题目点拨】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16、【解题分析】

直接合并同类二次根式即可.【题目详解】原式=(3﹣2)=.故答案为.【题目点拨】本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.17、2或或【解题分析】

分以下三种情况求解:(1)点P在CD上,如图①,根据菱形的边长以及CP1=2DP1可得出结果;(2)点P在对角线AC上,如图②,在三角形CDP2中,可得出∠P2DC=90°,进而可得出DP2的长;(3)当点P在边AD上,如图③,过点D作于点F,过点作于点E,设,则,再用含x的代数式表示出CE,EP3,CP3的长,根据勾股定理列方程求解即可.【题目详解】解:(1)当点P在CD上时,如解图①,,,;(2)当点P在对角线AC上时,如解图②,,.当时,,;图①图②(3)当点P在边AD上时,如解图③,过点D作于点F,过点作于点E,设,则,,,,,,,.,在中,由勾股定理得,解得,(舍).综上所述,DP的长为2或或.故答案为:2或或.【题目点拨】本题主要考查菱形的性质,含30°直角三角形的性质以及勾股定理,在解答无图题时注意分类讨论,避免漏解.

错因分析较难题.出错原因:①不能全面考虑所有情况,即根据动点在每一条边上进行分类讨论求解;②在第三种情况下不能将已知条件有效利用,转化到一个三角形中通过勾股定理列方程求解.

18、x≥﹣1.【解题分析】

根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【题目详解】解:由题意得,1+x≥0,

解得x≥-1.

故答案为x≥-1.【题目点拨】本题考查二次根式的意义和性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、解答题(共66分)19、(1)90,180,(1,);(2)存在,E的坐标为(0,)或(2,),或(0,﹣);(3)P(1﹣,1+).【解题分析】

(1)先求出OB,再由旋转求出OD,CD,即可得出结论;(2)先求出D的坐标,再分三种情况,利用平行四边形的性质即可得出结论;(3)先判断出四边形OAPC是正方形,再利用中点坐标公式即可得出结论【题目详解】解:(1)Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转90°,再绕斜边中点旋转180°得到的,在Rt△AOB中,∠AOB=30°,AB=1,∴OB=,由旋转知,OD=AB=1,CD=OB=,∴C(1,),故答案为90,180,(1,);(2)存在,理由:如图1,由(1)知,C(1,),∴D(1,0),∵O(0,0),∵以C、O、D、E为顶点的四边形是平行四边形,∴①当OC为对角线时,∴CE∥OD,CE=OD=1,点E和点B'重合,∴E(0,),②当CD为对角线时,CE∥OD,CE=OD=1,∴E(2,),当OD为对角线时,OE'∥CD,OE'=CD,∴E(0,﹣),即:满足条件的E的坐标为(0,)或(2,),或(0,﹣);(3)由旋转知,OA=OC,∠OCD=∠AOB=30°,∴∠COD=90°﹣∠OCD=60°,∴∠AOC=90°,由折叠知,AP=OA,PC=OC,∴四边形OAPC是正方形,设P(m,n)∵A(﹣,1),C(1,),O(0,0),∴(m+0)=(1﹣),(n+0)=(1+),∴m=1﹣,n=1+,∴P(1﹣,1+).【题目点拨】此题考查翻折变换(折叠问题),平行四边形的性质和旋转的性质,解题关键在于掌握各性质和做辅助线20、(1)a=2,b=10;(2)2;(3).【解题分析】

(1)利用扇形图以及统计表,即可解决问题;(2)根据平均数的定义计算即可;(3)列表分析即可解决问题.【题目详解】(1)由题意a=2,b=10%.故答案为2,10%;(2)这所学校平均每班贫困学生人数2(人);(3)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为.【题目点拨】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)证明见解析;(2)2.【解题分析】

(1)先证明△AOB≌△COD,可得OD=OB,从而根据对角线互相平分的四边形是平行四边形可证结论;(2)先根据对角线互相垂直的平行四边形是菱形证明四边形ABCD是菱形,然后根据菱形的面积等于对角线乘积的一半计算即可.【题目详解】解:(1)∵AB//DC,∴∠1=∠2,∠3=∠4又∵AO=CO,∴△AOB≌△COD,∴OD=OB,∴四边形ABCD是平行四边形(2)∵AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形ABCD的面积为S=AC×BD=2.【题目点拨】本题考查了平行四边形的判定,菱形的判定与性质,熟练掌握平行四边形的判定方法和菱形的判定方法是解答本题的关键.22、(1)见解析;(2)∠C=44°.【解题分析】

(1)由平行四边形的性质及角平分线的性质可得AB=AE,CF=CD,进而可得四边形EBFD是平行四边形,即可得出结论;(2)根据平行线的性质和角平分线的定义即可得到结论.【题目详解】(1)证明:在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,又BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,即AB=AE,同理CF=CD,又AB=CD,∴CF=AE,∴BF=DE,∴四边形EBFD是平行四边形;(2)解:∵∠AEB=68°,AD∥BC,∴∠EBF=∠AEB=68°,∵BE平分∠ABC,∴∠ABC=2∠EBF=136°,∴∠C=180°-∠ABC=44°.故答案为:(1)见解析;(2)∠C=44°.【题目点拨】本题考查平行四边形的性质及角平分线的性质问题,要熟练掌握,并能够求解一些简单的计算、证明问题.23、(1)(1,0),(0,-2);(2)C(2,2);m<0或m>2;(3)或y=-3x-2.【解题分析】

(1)利用函数解析式和坐标轴上点的坐标特征即可解决问题;(2)①如图②,过点C作CD⊥x轴,垂足是D.构造全等三角形,利用全等三角形的性质求得点C的坐标;②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2;(3)如图③中,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.利用全等三角形的性质求出点N坐标,当直线BN′⊥直线BN时,直线BN′也满足条件,求出直线BN′的解析式即可.【题目详解】解:(1)如图①,令y=0,则2x-2=0,即x=1.所以A(1,0).令x=0,则y=-2,即B(0,-2).故答案是:(1,0);(0,-2);(2)①如图②,过点C作CD⊥x轴,垂足是D,∵∠BOA=∠ADC=90°,∠BAO=∠CAD,CA=AB,∴△BOA≌△CAD(AAS),∴CD=OB=2,AD=OA=1,∴C(2,2);②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2.故答案是:m<0或m>2;(3)如图③,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.∵∠AOB=∠BAN=∠AHN=90°,∴∠OAB+∠ABO=90°,∠OAB+∠HAN=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论