版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省建湖县数学八下期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,平行四边形中,,,,动点从点出发,沿运动至点停止,设运动的路程为,的面积为,则与的函数关系用图象表示正确的是()A. B.C. D.2.已知点A的坐标为(3,﹣6),则点A所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.要使二次根式有意义,则的取值范围是()A. B. C. D.4.下列调查中,最适合采用全面调查(普查)方式的是()A.对无锡市空气质量情况的调查 B.对某校七年级()班学生视力情况的调查C.对某批次手机屏使用寿命的调查 D.对全国中学生每天体育锻炼所用时间的调查5.以下四组数中的三个数作为边长,不能构成直角三角形的是()A.1,, B.5,12,13 C.32,42,52 D.8,15,17.6.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. B. C. D.7.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC8.若线段a,b,c组成直角三角形,则它们的比可以为()A.2∶3∶4 B.7∶24∶25 C.5∶12∶14 D.4∶6∶109.若代数式有意义,则一次函数的图象可能是A. B. C. D.10.用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是()A.90° B.60° C.45° D.30°二、填空题(每小题3分,共24分)11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.12.已知矩形ABCD,给出三个关系式:①AB=BC;②AC=BD;③AC⊥BD,如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________.13.在平面直角坐标系中,将函数的图象向上平移6个单位长度,则平移后的图象与轴的交点坐标为__________.14.一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.15.如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.16.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(,-1),则不等式mx+2<kx+b<0的解集为____.17.正方形网格中,∠AOB如图放置,则tan∠AOB=______________.18.计算:π0-()-1=______.三、解答题(共66分)19.(10分)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.20.(6分)解不等式组:,并把解集表示在数轴上.21.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.22.(8分)如图,在△ABC中,,,,求AB的长.23.(8分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)求出y1、y2关于x的函数关系式?(3)如果共有50人参加时,选择哪家旅行社合算?24.(8分)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.25.(10分)某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.年对、两区的空气量进行监测,将当月每天的空气污染指数(简称:)的平均值作为每个月的空气污染指数,并将年空气污染指数绘制如下表.据了解,空气污染指数时,空气质量为优:空气污染指数时,空气质量为良:空气污染指数时,空气质量为轻微污染.月份地区区区(1)请求出、两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对区、区的空气质量进行有效对比,说明哪一个地区的环境状况较好.26.(10分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
当点E在BC上运动时,三角形的面积不断增大,当点E在DC上运动时,三角形的面积不变,当点E在AD上运动时三角形的面积不等减小,然后计算出三角形的最大面积即可得出答案.【题目详解】当点E在BC上运动时,三角形的面积不断增大,最大面积=×3××4=3;当点E在DC上运动时,三角形的面积为定值3.当点E在AD上运动时三角形的面不断减小,当点E与点A重合时,面积为0.故选:D.【题目点拨】此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.2、D【解题分析】
在平面直角坐标系中要判定一个点所在的象限,通常只需要判断点的横坐标和纵坐标的符号是正还是负就可以确定它所在的象限了.点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.【题目详解】横纵坐标同是正数在第一象限,横坐标负数纵坐标正数在第二象限,横纵坐标同是负数在第三象限,横坐标正数纵坐标负数在第四象限,点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.【题目点拨】此题主要考查如何判断点所在的象限,熟练掌握每个象限内点的坐标的正负符号特征,即可轻松判断.3、D【解题分析】
根据二次根式有意义的条件进行求解即可.【题目详解】∵二次根式有意义∴解得故答案为:D.【题目点拨】本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.4、B【解题分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【题目详解】A.对无锡市空气质量情况的调查用抽样调查,错误;B、对某校七年级()班学生视力情况的调查用全面调查,正确;C、对某批次手机屏使用寿命的调查用抽样调查,错误;D、对全国中学生每天体育锻炼所用时间的调查用抽样调查,错误;故选B.【题目点拨】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、C【解题分析】
分别求出两小边的平方和和长边的平方,看看是否相等即可.【题目详解】A、∵12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;B、∵52+122=132,∴以5、12、13为边能组成直角三角形,故本选项不符合题意;C、∵92+162≠52,∴以32,42,52为边不能组成直角三角形,故本选项符合题意;D、∵82+152=172,∴8、15、17为边能组成直角三角形,故本选项不符合题意;故选C.【题目点拨】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形6、D【解题分析】
根据等边三角形的性质和平移的性质即可得到结论.【题目详解】解:∵△OAB是等边三角形,∵B的坐标为(2,0),∴A(1,),∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,∴A′的坐标(4,),故选:D.【题目点拨】本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.7、B【解题分析】【分析】由矩形的判定方法即可得出答案.【题目详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,故选B.【题目点拨】本题考查了矩形的判定,熟练掌握“有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有三个角是直角的四边形是矩形”是解题的关键.8、B【解题分析】
要组成直角三角形,三条线段的比值要满足较小的比值的平方和等于较大比值的平方.结合选项分析即可得到答案.【题目详解】A.
22+32≠42,故本选项错误;
B.
72+242=252,故本选项正确;
C.
52+122≠142,故本选项错误;
D.
4262≠102,故本选项错误.
故选B.【题目点拨】本题考查勾股定理的逆定理,解题的关键是掌握勾股定理的逆定理.9、A【解题分析】
根据二次根式有意义的条件和分式有意义的条件得到k-1>0,解k>1,则1-k<0,然后根据一次函数与系数的关系可判断一次函数的位置,从而可对各选项进行判断.【题目详解】解:根据题意得k-1>0,解k>1,
因为k-1>0,1+k>0,
所以一次函数图象在一、二、三象限.
故选:A.【题目点拨】本题考查一次函数与系数的关系:对于y=kx+b,当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.10、A【解题分析】
根据菱形的判定方法即可解决问题;【题目详解】解:如图,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形,故选:A.【题目点拨】本题考查菱形的判定,解题的关键是熟练掌握类型的判定方法,属于中考常考题型.二、填空题(每小题3分,共24分)11、3【解题分析】
由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【题目详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【题目点拨】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.12、①一组邻边相等的矩形是正方形【解题分析】
根据正方形的判定定理添加一个条件使得矩形是菱形即可.【题目详解】解:∵四边形ABCD是矩形,AB=BC,∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).故答案为:①,一组邻边相等的矩形是正方形.【题目点拨】本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.13、.【解题分析】
先根据平移特点求出新函数解析式,然后再求解新函数与x轴的交点坐标.【题目详解】解:由“上加下减”的平移规律可知:将函数的图象向上平移6个单位长度所得到的的新函数的解析式为:,令,得:,解得:,∴与轴的交点坐标为,故答案为:.【题目点拨】本题考查的是一次函数的图象与几何变换,熟知平移的规律——上加下减,左加右减是解答此题的关键.14、x>﹣3x≤﹣【解题分析】当x>−3时,2x+6>0;解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.故答案为x>−3;x⩽﹣.15、13×(23)【解题分析】
已知正方形A1B1C1D1的边长为13,然后得到正方形A2B2C2D2的边长为,然后得到规律,即可求解.【题目详解】解:∵正方形A1B1C1D1的边长为13正方形A2B2C2D2的边长为1正方形A3B3C3D3的边长为13…,正方形A2018B2018C2018D2018的边长为13故答案为13【题目点拨】本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.16、﹣4<x<﹣【解题分析】根据函数的图像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是﹣4<x<﹣.故答案为﹣4<x<﹣.17、1【解题分析】试题解析:如图,tan∠AOB==1,故答案为1.18、-1【解题分析】
直接利用零指数幂和负整数指数幂的运算法则进行计算即可.【题目详解】原式=1-3=-1.故答案为:-1.【题目点拨】本题主要考查实数的运算,掌握零指数幂和负整数指数幂的运算法则是解题的关键.三、解答题(共66分)19、(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【解题分析】
(1)易证△ABM≌△BCN,再根据角度的关系得到∠APB=90°,即可得到AM⊥BN;(2)根据旋转的性质及(1)得到四边形BPEP′是矩形,再根据BP=BP′,得到四边形BPEP′是正方形.【题目详解】(1)AM⊥BN证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°∵BM=CN,∴△ABM≌△BCN∴∠BAM=∠CBN∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM⊥BN.(2)四边形BPEP′是正方形.△A′P′B是△APB绕着点B逆时针旋转90º所得,∴BP=BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.又因为BP=BP′,所以四边形BPEP′是正方形.【题目点拨】此题主要考查特殊平行四边形的性质与判定,解题的关键是熟知正方形的性质与判定.20、-2≤x<2【解题分析】
先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【题目详解】解:∵解不等式①得:x<2,解不等式②得:x≥-2,∴不等式组的解集为-2≤x<2,在数轴上表示为:【题目点拨】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集等知识点,能求出不等式组的解集是解此题的关键.21、(1)见解析;(2)见解析;【解题分析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【题目详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.22、AB=9+4.【解题分析】
作CD⊥AB于D,据含30度的直角三角形三边的关系得到CD=,AD=9,再在Rt△BCD中根据正切的定义可计算出BD,然后把AD与BD相加即可.【题目详解】解:如图,过点C作CD⊥AB于点D.∵在Rt△CDA中,∠A=30°,∴CD=AC•sin30°=3,AD=AC×cos30°=9,∵在Rt△CDB中,∴BD===4.∴AB=AD+DB=9+4.【题目点拨】本题考查了解直角三角形.解题时,通过作CD⊥AB于D构建Rt△ACD、Rt△BCD是解题关键.23、(1)当参加老师的人数为30时,两家旅行社收费相同;(2)y2=40x+600;(3)如果共有50人参加时,选择乙家旅行社合算,理由见解析【解题分析】
(1)根据函数图象和图象中的数据可以得到当参加老师的人数为多少时,两家旅行社收费相同;(2)根据函数图象中的数据可以求得y1、y2关于x的函数关系式;(3)根据函数图象可以得到如果共有50人参加时,选择哪家旅行社合算.【题目详解】解:(1)由图象可得,当参加老师的人数为30时,两家旅行社收费相同;(2)设y1关于x的函数关系式是y1=ax,30a=1800,得a=60,即y1关于x的函数关系式是y1=60x;设y2关于x的函数关系式是y2=kx+b,,得,即y2关于x的函数关系式是y2=40x+600;(3)由图象可得,当x>50时,乙旅行社比较合算,∴如果共有50人参加时,选择乙家旅行社合算.【题目点拨】本题考查一次函数的应用、方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24、(1)证明见解析;(2)证明见解析;(3)∠GFH=100°.【解题分析】
(1)由中点性质及AB=AC,得到BD=EC,再由中位线性质证明FG∥BD,GF=BD,FH∥EC,FH=EC,从而得到FG=FH;(2)由(1)FG∥BD,FH∥EC,再由∠A=90°,可证FG⊥FH;(3)由(1)FG∥BD,∠A=80°,可求得∠FKC,再由FH∥EC,可求得∠GFH的度数.【题目详解】(1)∵AB=AC,点D,E分别是边AB,AC的中点∴BD=EC∵点F,G,H分别为BE,DE,BC的中点∴FG∥BD,GF=BDFH∥EC,FH=EC∴FG=FH;(2)由(1)FG∥BD又∵∠A=90°∴FG⊥AC∵FH∥EC∴FG⊥FH;(3)延长FG交AC于点K,∵FG∥BD,∠A=80°∴∠FKC=∠A=80°∵FH∥EC∴∠GFH=180°﹣∠FKC=100°【题目点拨】本题是几何问题,考查了三角形中位线的有关性质,解答时应根据题意找到相应三角形的中位线.25、(1)A区的的空气污染指数的平均数是79,B区的的空气污染指数的平均数是80;(2)A区【解题分析】
(1)根据平均数的计算公式分别进行计算即可;(2)根据平均数和众数的定义先求出各地区的平均数和众数,再进行比较即可得出答案.【题目详解】(1)A区的空气污染指数的平均数是:(115+108+85+100+95+50+80+70+50+50+100+45)=79;B区的空气污染指数的平均数是:(105+95+90+80+90+60+90+85+60+70+90+45)=80;(2)∵A区的众数是50,B区的众数是90,∴A地区的环境状况较好.∵A区的平均数小于B区的平均数,∴A区的环境状况较好.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论