版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省绍兴市元培中学八年级数学第二学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块 B.153块 C.154块 D.155块2.如图,直线和直线相交于点,则不等式的解集为()A. B. C. D.3.下列函数中,自变量x的取值范围是x≥2的是()A. B.C. D.4.一次函数y=—2x+3的图象与两坐标轴的交点是()A.(3,1)(1,); B.(1,3)(,1); C.(3,0)(0,); D.(0,3)(,0)5.如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为()A.1cm2 B.2cm2 C.cm2 D.cm26.如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为矩形,则它的面积为()A.1 B.2 C.3 D.47.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A.极差是3 B.众数是4 C.中位数40 D.平均数是20.58.到△ABC的三条边距离相等的点是△ABC的().A.三条中线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条角平分线的交点9.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC10.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位二、填空题(每小题3分,共24分)11.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则这两人10次射击命中环数的方差____.(填“>”、“<”或“=”)12.抛物线的顶点坐标是__________.13.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.14.用反证法证明“如果,那么.”是真命题时,第一步应先假设________
.15.当x______时,在实数范围内有意义.16.比较大小:_______2(填“>”或“<”).17.铁路部门规定旅客免费携行李箱的长宽高之和不超过,某厂家生产符合该规定的行李箱,已知行李箱的高为,长与宽之比为,则该行李箱宽度的最大值是_______.18.如图,小军在地面上合适的位置平放了一块平面镜(平面镜的高度忽略不计),刚好在平面镜中的点处看到旗杆顶部,此时小军的站立点与点的水平距离为,旗杆底部与点的水平距离为.若小军的眼睛距离地面的高度为(即),则旗杆的高度为_____.三、解答题(共66分)19.(10分)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.20.(6分)用适当的方法解方程(1)x2﹣4x+3=1;(2)(x+1)2﹣3(x+1)=1.21.(6分)已知:如图,在△ABC中,∠BAC的平分线AP与BC的垂直平分线PQ相交于点P,过点P分别作PM⊥AC于点M,PN⊥AB交AB延长线于点N,连接PB,PC.求证:BN=CM.22.(8分)如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.23.(8分)如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.在图甲中画一个以AB为对角线的平行四边形.在图乙中画一个以AB为边的矩形.24.(8分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:根据以上信息解答以下问题:(1)本次抽查的学生共有多少名,并补全条形统计图;(2)写出被抽查学生的体育锻炼时间的众数和中位数;(3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.25.(10分)如图所示,在平行四边形ABCD中,AD∥BC,过B作BE⊥AD交AD于点E,AB=13cm,BC=21cm,AE=5cm.动点P从点C出发,在线段CB上以每秒1cm的速度向点B运动,动点Q同时从点A出发,在线段AD上以每秒2cm的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动,设运动的时间为t(秒)(1)当t为何值时,四边形PCDQ是平行四边形?(2)当t为何值时,△QDP的面积为60cm2?(3)当t为何值时,PD=PQ?26.(10分)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形和图形,若图形和图形分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形和图形是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点,点,①下列四个点,,,中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标的取值范围;(2)四边形GHJK的四个顶点的坐标分别为,,,,一次函数图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
根据题意设出未知数,列出相应的不等式,从而可以解答本题.【题目详解】解:设这批手表有x块,
解得,
这批手表至少有154块,
故选C.【题目点拨】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.2、C【解题分析】
写出直线y=kx(k≠0)在直线y=mx+n(m≠0)上方部分的x的取值范围即可.【题目详解】解:由图可知,不等式kx≥mx+n的解集为x≥2;故选:C.【题目点拨】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.3、D【解题分析】
根据分式与二次根式有意义的条件依次分析四个选项,比较哪个选项符合条件,可得答案.【题目详解】解:A、y=有意义,∴2-x≥0,解得x≤2;
B、y=有意义,∴x-2>0,解得x>2;
C、y=有意义,∴4-x2≥0,解得-2≤x≤2;
D、y=有意义,∴x+2≥0且x-2≥0,解得x≥2;
分析可得D符合条件;
故选:D.【题目点拨】本题考查函数自变量的取值问题,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.4、D【解题分析】y=—2x+3与横轴的交点为(,0),与纵轴的交点为(0,3),故选D5、D【解题分析】
根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5的面积.【题目详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又S△ABO2=S矩形,∴S2=S矩形==;,…,同理:设ABC5O5为平行四边形为S5,S5==.故选:D.【题目点拨】此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.6、B【解题分析】
根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【题目详解】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3−1=2.故选B.7、C【解题分析】
极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【题目详解】解:A、这组数据的极差是:60-25=35,故本选项错误;
B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
故选:C.【题目点拨】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.8、D【解题分析】
根据角平分线的性质求解即可.【题目详解】到△ABC的三条边距离相等的点是△ABC的三条角平分线的交点故答案为:D.【题目点拨】本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键.9、B【解题分析】【分析】由矩形的判定方法即可得出答案.【题目详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,故选B.【题目点拨】本题考查了矩形的判定,熟练掌握“有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有三个角是直角的四边形是矩形”是解题的关键.10、A【解题分析】
解:根据网格结构,观察点对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以,平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选A.二、填空题(每小题3分,共24分)11、>【解题分析】
先分别求出各自的平均数,再根据方差公式求出方差,即可作出比较.【题目详解】甲的平均数则乙的平均数则所以【题目点拨】本题属于基础应用题,只需学生熟练掌握方差的求法,即可完成.12、【解题分析】
根据顶点式函数表达式即可写出.【题目详解】抛物线的顶点坐标是故填【题目点拨】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的解析式特点.13、0.7【解题分析】
用通话时间不足10分钟的通话次数除以通话的总次数即可得.【题目详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.14、a≥0【解题分析】
用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.【题目详解】解:“如果,那么.”是真命题时
,用反证法证明第一步应假设.故答案为:【题目点拨】本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.15、x≥-1.【解题分析】
根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【题目详解】由题意得,2x+2≥0,解得,x≥-1,故答案为:x≥-1.【题目点拨】此题考查二次根式的有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.16、<【解题分析】试题解析:故答案为:17、【解题分析】
设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.【题目详解】解:设长为3x,宽为2x,由题意,得:5x+20≤160,解得:x≤28,故行李箱宽度的最大值是28×2=56cm.故答案为:56cm.【题目点拨】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系,建立不等式.18、1【解题分析】分析:根据题意容易得到△CDE∽△CBA,再根据相似三角形的性质解答即可.详解:由题意可得:AB=1.5m,BC=2m,DC=12m,
△ABC∽△EDC,
则,
即,
解得:DE=1,
故答案为1.点睛:本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程.三、解答题(共66分)19、见解析【解题分析】
分析:证明:∵∠BAD=∠CAE,∴∠BAE=∠CAD.在△ABE和△ACD中,∵AB=AC,AE=AD,∠BAE=∠CAD,∴△ABE≌△ACD(SAS).∴BE=CD.又∵DE=BC,∴四边形BCDE为平行四边形.如图,连接BD,CE,在△ACE和△ABD中,∵AC=AB,AE=AD,∠CAE=∠BAD,∴△ACE≌△ABD(SAS),∴CE=BD.∴四边形BCED为矩形(对角线相等的平行四边形是矩形).20、(1)x1=1,x2=3;(2)x1=﹣1,x2=2.【解题分析】
(1)直接利用十字相乘法解方程进而得出答案;(2)直接提取公因式进而分解因式解方程即可.【题目详解】解:(1),解得:,;(2),解得:,.【题目点拨】此题主要考查了因式分解法解方程,正确分解因式是解题关键.21、见解析【解题分析】
根据角平分线上的点到角的两边距离相等可得PM=PN,线段垂直平分线上的点到线段两端点的距离相等可得PB=PC,然后利用“HL”证明Rt△PBN和Rt△PCM全等,根据全等三角形对应边相等证明即可.【题目详解】∵AP是∠BAC的平分线,PM⊥AC,PN⊥AB,
∴PM=PN,
∵PQ是线段BC的垂直平分线,
∴PB=PC,
在Rt△PBN和Rt△PCM中,,
∴Rt△PBN≌Rt△PCM(HL),
∴BN=CM.【题目点拨】本题考查了全等三角形的判定与性质,主要利用了角平分线上的点到角的两边距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记各性质并准确确定出全等三角形是解题的关键.22、证明见解析.【解题分析】
连接BD,利用对角线互相平分来证明即可.【题目详解】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形∴OA=OCOB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)【题目点拨】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.23、(1)作图见解析;(2)作图见解析.【解题分析】
直接利用平行四边形的性质得出符合题意的图形;直接利用矩形的性质得出符合题意的图形.【题目详解】如图甲所示:四边形ACBD是平行四边形;如图乙所示:四边形ABCD是矩形.【题目点拨】此题主要考查了应用设计与作图,正确把握平行四边形以及矩形的性质是解题关键.24、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名【解题分析】
(1)本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数=抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;(2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;(3)该校学生一周体育锻炼时间不低于9小时的估计人数
=该校学生总数×一周体育锻炼时间不低于9小时的频率.【题目详解】(1)解:本次抽查的学生共有8÷20%=40(名)一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)条形图补充如下:(2)解:由条形图可知,8出现了18次,此时最多,所以众数是8将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5(3)解:1800×=900(名)答:估计该校学生一周体育锻炼时间不低于9小时的大约有900名.【题目点拨】此题主要考查统计调查的应用,解题的关键是根据题意得到本次抽查的学生的总人数.25、(1)当t=7时,四边形PCDQ是平行四边形;(2)当t=时,△QDP的面积为60cm2;(3)当t=时,PD=PQ.【解题分析】
(1)根据题意用t表示出CP=t,AQ=2t,根据平行四边形的判定定理列出方程,解方程即可;(2)根据三角形的面积公式列方程,解方程得到答案;(3)根据等腰三角形的三线合一得到DH=DQ,列方程计算即可.【题目详解】(1)由题意得,CP=t,AQ=2t,∴QD=21﹣2t,∵AD∥BC,∴当DQ=PC时,四边形PCDQ是平行四边形,则21﹣2t=t,解得,t=7,∴当t=7时,四边形PCDQ是平行四边形;(2)在Rt△ABE中,BE==12,由题意得,×(21﹣2t)×12=60,解得,t=,∴当t=时,△QDP的面积为60cm2;(3)作PH⊥DQ于H,DG⊥BC于G,则四边形HPGD为矩形,∴PG=HD,由题意得,CG=AE=5,∴PG=t﹣5,当PD=PQ,PH⊥DQ时,DH=DQ,即t﹣5=(21﹣2t),解得,t=,则当t=时,PD=PQ.【题目点拨】本题考查的是平行四边形的性质和判定、等腰三角形的性质,掌握平行四边形的判定定理和性质定理是解题的关键.26、(1)①P1,P1;②≤xE≤;(2)2≤b≤2+2或-2-2≤b≤-2.【解题分析】
(1)①根据画出图形,根据“中心轴对称”的定义即可判断.②以O为圆心,OA为半径画弧交射线OB于E,以O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《立定跳远》的教学反思
- 《快乐英语》第三册教案
- 体育场馆电缆网络顶管施工协议
- 城市绿化钻孔桩施工合同
- 环保产业园项目招投标资料
- 建筑工人休息室空调节能办法
- 公共交通枢纽防火门招投标资料
- 物业公司医疗保健人员合同模板
- 招投标合同变更法律风险
- 研发项目招投标实施细则
- Module1 Unit3 Period 3 A thirsty bird (教学设计)-2024-2025学年沪教牛津版(深圳用)英语四年级上册
- 《心系国防 强国有我》 课件-2024-2025学年高一上学期开学第一课国防教育主题班会
- Unit1 单元整体教学设计 2024-2025学年人教版(2024)七年级英语上册
- 2024年秋季新华师大版七年级上册数学教学课件 4.1.1对顶角
- 《创伤失血性休克中国急诊专家共识(2023)》解读课件
- 论网络交易违法行为监管地域管辖权的确定
- 酒店连锁突发事件处理考核试卷
- 2024发电企业安全风险分级管控和隐患排查治理管理办法
- 2024-2030年中国甲硫基乙醛肟行业市场行情监测及发展前景研判报告
- 运用PBL教学法探讨如何教会患者正确使用吸入剂
- 第四章运动和力的关系单元教学设计
评论
0/150
提交评论