版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省吴兴区七校联考2024届八年级数学第二学期期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为x轴、y轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为1,2,表示水宁阁的点的坐标为-4,1,那么下列各场馆的坐标表示正确的是()A.中国馆的坐标为-1,-2B.国际馆的坐标为1,-3C.生活体验馆的坐标为4,7D.植物馆的坐标为-7,42.如图,在平面直角坐标系中,直线与双曲线交于、两点,且点的坐标为,将直线向上平移个单位,交双曲线于点,交轴于点,且的面积是.给出以下结论:(1);(2)点的坐标是;(3);(4).其中正确的结论有A.1个 B.2个 C.3个 D.4个3.如图,以正方形ABCD的边AB为一边向外作等边△ABE,则∠BED的度数为()A.55° B.45° C.40° D.42.5°4.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有A.4个 B.3个 C.2个 D.1个5.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,36.若一次函数的图象经过两点和,则下列说法正确的是()A. B. C. D.7.已知,是一次函数的图象上的两个点,则,的大小关系是A. B. C. D.不能确定8.小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为()A.y=0.5t(8<t≤12)B.y=0.5t+2(8<t≤12)C.y=0.5t+8(8<t≤12)D.y="0."5t-2(8<t≤12)9.如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中不能说明四边形ABCD是平行四边形的是()A.AD=BC B.AC=BDC.AB∥CD D.∠BAC=∠DCA10.下列方程中是一元二次方程的是()A.x2﹣1=0 B.y=2x2+1 C.x+=0 D.x2+y2=1二、填空题(每小题3分,共24分)11.如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为________cm.12.计算的结果是_______________.13.在比例尺1∶8000000的地图上,量得太原到北京的距离为6.4厘米,则太原到北京的实际距离为公里。14.菱形的周长为12,它的一个内角为60°,则菱形的较长的对角线长为______.15.如图,ABC的周长为16,⊙O与BC相切于点D,与AC的延长线相切于点E,与AB的延长线相切于点F,则AF的长为_____.16.的非负整数解为______.17.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.18.如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=__________.三、解答题(共66分)19.(10分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.(l)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?20.(6分)如图,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB的中点.(1)求∠A的度数;(2)求EF和AE的长.21.(6分)如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.22.(8分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?23.(8分)先化简再求值,其中.24.(8分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)25.(10分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF.(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8-4,求正方形ABCD的面积?26.(10分)已知:如图,在中,,cm,cm.直线从点出发,以2cm/s的速度向点方向运动,并始终与平行,与线段交于点.同时,点从点出发,以1cm/s的速度沿向点运动,设运动时间为(s)().(1)当为何值时,四边形是矩形?(2)当面积是的面积的5倍时,求出的值;
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.【题目详解】解:根据题意可建立如下所示平面直角坐标系,A、中国馆的坐标为(-1,-2),故本选项正确;B、国际馆的坐标为(3,-1),故本选项错误;C、生活体验馆的坐标为(7,4),故本选项错误;D、植物馆的坐标为(-7,-4),故本选项错误.故选:A.【题目点拨】此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.2、C【解题分析】
(1)把A(4,a)代入,求得A为(4,2),然后代入求得k=8;(2)联立方程,解方程组即可求得B(-4,-2);
(3)根据同底等高的三角形相等,得出S△ABC=S△ABF;
(4)根据S△ABF=S△AOF+S△BOF列出,解得。【题目详解】解:(1)直线经过点,,,点在双曲线上,,故正确;(2)解得或,点的坐标是,故正确;(3)将直线向上平移个单位,交双曲线于点,交轴于点,,和是同底等高,,故错误;(4),,解得,故正确;故选:.【题目点拨】本题考查了反比例函数和一次函数的交点,待定系数法求反比例函数的解析式,三角形的面积等,求得交点坐标是解题的关键.3、B【解题分析】
根据等边三角形,可证△AED为等腰三角形,从而可求∠AED,也就可得∠BED的度数.【题目详解】解:∵等边△ABE∴∠EAB=∠BED=60°,AE=AD∵四边形ABCD是正方形∴∠BAD=90°,AB=AD∴∠EAD=150°,AE=AD∴∠AED=∠ADE=15°∴∠BED=60°-15°=45°故选:B.【题目点拨】此题主要考查了等边三角形的性质.即每个角为60度.4、B【解题分析】
根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,
利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF=S△DAE,则S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四边形DEOF.【题目详解】解:∵四边形ABCD为正方形,
∴AB=AD=DC,∠BAD=∠D=90°,
而CE=DF,
∴AF=DE,
在△ABF和△DAE中
∴△ABF≌△DAE,
∴AE=BF,所以(1)正确;
∴∠ABF=∠EAD,
而∠EAD+∠EAB=90°,
∴∠ABF+∠EAB=90°,
∴∠AOB=90°,
∴AE⊥BF,所以(2)正确;
连结BE,
∵BE>BC,
∴BA≠BE,
而BO⊥AE,
∴OA≠OE,所以(3)错误;
∵△ABF≌△DAE,
∴S△ABF=S△DAE,
∴S△ABF-S△AOF=S△DAE-S△AOF,
∴S△AOB=S四边形DEOF,所以(4)正确.
故选B.【题目点拨】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.5、D【解题分析】分析:欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.详解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.点睛:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6、A【解题分析】
根据一次函数的增减性求解即可.【题目详解】∵2>0,∴y随x的增大而增大,∵-1<2,∴.故选A.【题目点拨】本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7、C【解题分析】
根据,是一次函数的图象上的两个点,由,结合一次函数在定义域内是单调递减函数,判断出,的大小关系即可.【题目详解】,是一次函数的图象上的两个点,且,
.
故选:C.
【题目点拨】本题主要考查了一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数的性质.8、D【解题分析】试题分析:由题意知小高从家去上班花费的时间为12分钟,当8<t≤12,小高正在走那段下坡路;小高从家门口骑车去离家4千米的单位上班,平路1千米,上坡路0.2×5=1千米,则下坡路长2千米,走下坡路花了4分钟,走下坡路的速度是0.5千米/分钟;若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为y=2+0.5•(t-8)=0.5t-2考点:求函数关系式点评:本题考查求函数关系式,做此类题的关键是审清楚题,找出题中各量之间的关系9、B【解题分析】
解:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;B.∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;D.∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△CDA,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.故选B.10、A【解题分析】解:A.x2﹣1=0是一元二次方程,故A正确;B.y=2x2+1是二次函数,故B错误;C.x+=0是分式方程,故C错误;D.x2+y2=1中含有两个未知数,故D错误.故选A.二、填空题(每小题3分,共24分)11、4【解题分析】
第一个正方形的边长为64cm,则第二个正方形的边长为64×cm,第三个正方形的边长为64×()2cm,依此类推,通过找规律求解.【题目详解】根据题意:第一个正方形的边长为64cm;第二个正方形的边长为:64×=32cm;第三个正方形的边长为:64×()2cm,…此后,每一个正方形的边长是上一个正方形的边长的,所以第9个正方形的边长为64×()9-1=4cm,故答案为4【题目点拨】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.12、【解题分析】
应用二次根式的乘除法法则()及同类二次根式的概念化简即可.【题目详解】解:故答案为:【题目点拨】本题考查了二次根式的化简,综合运用二次根式的相关概念是解题的关键.13、512【解题分析】设甲地到乙地的实际距离为x厘米,根据题意得:1/8000000=6.4/x,解得:x=51200000,∵51200000厘米=512公里,∴甲地到乙地的实际距离为512公里.14、3【解题分析】
根据菱形的对角线互相垂直平分可得AC⊥BD,BD=2OB,菱形的对角线平分一组对角线可得∠ABO=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得AO=AB,再利用勾股定理列式求出OB,即可得解.【题目详解】解:如图所示:∵菱形ABCD的周长为12,∴AB=3,AC⊥BD,BD=2OB,∵∠ABC=60°,∴∠ABO=∠ABC=30°,∴AO=AB=×3=,由勾股定理得,OB===,∴BD=2OB=3.故答案为:3.【题目点拨】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.15、1【解题分析】
根据切线长定理得出AF=AE,CE=CD,BF=BD,再根据△ABC的周长等于16得出AF+AE=16,即可求出AE.【题目详解】解:如图,∵AB、AC的延长线与圆分别相切于点E、F,
∴AF=AE,
∵圆O与BC相切于点D,
∴CE=CD,BF=BD,
∴BC=DC+BD=CE+BF,
∵△ABC的周长等于16,
∴AB+AC+BC=16,
∴AB+AC+CE+BF=16,
∴AF+AE=16,
∴AF=1.
故答案为1【题目点拨】此题考查了切线长定理,掌握切线长定理即从圆外一点引圆的两条切线,切线长相等是本题的关键.16、0,1,2【解题分析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.【题目详解】解:移项得:,合并同类项,得,不等式两边同时除以-7,得,所以符合条件的非负整数解是0,1,2.【题目点拨】本题考查了不等式的解法和非负整数解的知识,准确求解不等式是解决这类问题的关键.17、15°【解题分析】
根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.【题目详解】解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.∴∠EDC=70°-55°=15°.故答案为:15°.【题目点拨】本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.18、3【解题分析】
由矩形的性质可得AB=CD=6,再由折叠的性质可得AE=AB=6,在Rt△ADE中,根据勾股定理求得AD的长即可.【题目详解】∵纸片ABCD为矩形,∴AB=CD=6,∵矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,∴AE=AB=6,∵E为DC的中点,∴DE=3,在Rt△ADE中,AE=6,DE=3,由勾股定理可得,AD=故答案为:.【题目点拨】本题考查了矩形的性质、折叠的性质及勾股定理,正确求得AE=6、DE=3是解决问题的关键.三、解答题(共66分)19、(l)50分,80分,70分(2)候选人乙将被录用(3)候选人丙将被录用【解题分析】
(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【题目详解】(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:(分),乙的平均成绩为:(分),丙的平均成绩为:(分).由于,所以候选人乙将被录用.(3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么甲的个人成绩为:(分),乙的个人成绩为:(分),丙的个人成绩为:(分),由于丙的个人成绩最高,所以候选人丙将被录用.【题目点拨】解答本题的关键是读懂题意,通过阅读表格获取信息,再根据题目要求进行平均数与加权平均数的计算.20、(1)30°(2)EF=2cm,AE=2cm【解题分析】
(1)由“直角三角形的两个锐角互余”的性质来求∠A的度数;(2)由“30度角所对的直角边等于斜边的一半”求得BC=AB=4cm,再利用中位线的性质即可解答【题目详解】(1)∵在Rt△ABC中,∠C=90°,∠B=60°∴∠A=90°-∠B=30°即∠A的度数是30°.(2)∵在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm∴BC=AB=4cm∴AC==cm∴AE=AC=2cm∵E、F分别为边AC、AB的中点∴EF是△ABC的中位线∴EF=BC=2cm.【题目点拨】此题考查三角形中位线定理,含30度角的直角三角形,解题关键在于利用勾股定理进行计算21、(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).【解题分析】
(1)由于一次函数y=2x+4的图象与x、y轴分别交于点A、B,所以利用函数解析式即可求出A、B两点的坐标,然后作DF⊥x轴于点F,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AFD=90º,AB=AD,接着证明△BAO≌△ADF,最后利用全等三角形的性质可以得到DF=AO=2,AF=BO=4,从而求出点D的坐标;(2)过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,用求点D的方法求得点C的坐标为(4,2),得出OC=2,由A、B的坐标得到AB=2,从而OC=AB=AD,根据△ADE与△COM全等,利用全等三角形的性质可知OM=AE,即OA=EM=2,利用C、D的坐标求出直线CD的解析式,得出点E的坐标,根据EM=2,即可求出点M的坐标.【题目详解】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵点D落在第四象限,∴D(2,-2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC==2,∵A(-2,0),B(0,4),∴AB=2,∵四边形ABCD是正方形,∴AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).故答案为(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).【题目点拨】本题考查了一次函数图象上点的坐标特征,正方形的性质,全等三角形的判定与性质.22、(1)1000;(2)y=300x﹣5000;(3)40【解题分析】
根据题意得出第20天的总用水量;y与x的函数关系式为分段函数,则需要分两段分别求出函数解析式;将y=7000代入函数解析式求出x的值.【题目详解】(1)第20天的总用水量为1000米3当0<x<20时,设y=mx∵函数图象经过点(20,1000),(30,4000)∴m=50y与x之间的函数关系式为:y=50x当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴1000=20k+b4000=30k+b解得k=300b=-5000∴y与x(3)当y=7000时,有7000=300x﹣5000,解得x=40考点:一次函数的性质23、a-b,-1【解题分析】
根据分式的运算法则先算括号里的减法,然后做乘法即可。【题目详解】解:原式当时,原式【题目点拨】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键。24、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解题分析】
(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 23551-1:2024 EN Safety and control devices for gas burners and gas-burning appliances - Particular requirements - Part 1: Automatic and semi-automatic shut-off valves
- 吸脂手术室手术流程
- 易制爆化学品化验室职责
- 小主持人培训教材
- 社区困境青少年成因
- 培养团队精神培训
- 《公司的解散与清算》课件
- 新大陆云服务平台的使用传感器的添加智慧养老技术概论
- 投保资助型养老保险社会保险理论与实务
- 《呼吸康复》课件
- 水泵各部分结构及原理介绍课件
- 电工基础(周绍敏主编)-参考答案
- 双向情感障碍
- 统编语文教材的主要特点和教学建议(课堂PPT)课件
- 胃溃疡 演示文稿课件
- 胃肠镜检查前后注意事项课件-002
- ESD的防护常识幻灯片
- 重庆市树黄桷树介绍课件
- 苏武传 省赛获奖-完整版课件
- 中国历代化妆史课件
- 初中英语语法-介词课件(23张)
评论
0/150
提交评论