版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省晋城市数学八下期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.计算结果正确的是()A. B. C. D.2.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.73.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想 B.转化思想 C.方程思想 D.函数思想4.以下列长度为边长的三角形是直角三角形的是()A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,95.下列各式中,正确的是()A. B. C. D.6.调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是()A.20 B.30 C.0.4 D.0.67.实数a,b在数轴上的位置如图所示,则化简代数式|a+b|−a的结果是()A.2a+b B.2a C.a D.b8.若点A(2,3)在函数y=kx的图象上,则下列各点在此丽数图象上的是()A.(1,32) B.(2,-3) C.(4,5) D.(-2,9.下列点在直线y=-x+1上的是()A.(2,-1) B.(3,3) C.(4,1) D.(1,2)10.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,边长为的菱形中,,连接对角线,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…按此规律所作的第2019个菱形的边长为______.12.在中,,有一个锐角为,.若点在直线上(不与点、重合),且,则的长是___________13.一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是________.14.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.15.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.16.已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=.17.为了解一批节能灯的使用寿命,宜采用__________的方式进行调查.(填“普查”或“抽样调查”)18.小玲在一次班会中参加知识抢答活动,现有语文题道,数学题道,综合题道,她从中随机抽取道,抽中数学题的概率是_________.三、解答题(共66分)19.(10分)已知:在矩形ABCD中,点F为AD中点,点E为AB边上一点,连接CE、EF、CF,EF平分∠AEC.(1)如图1,求证:CF⊥EF;(2)如图2,延长CE、DA交于点K,过点F作FG∥AB交CE于点G若,点H为FG上一点,连接CH,若∠CHG=∠BCE,求证:CH=FK;(3)如图3,过点H作HN⊥CH交AB于点N,若EN=11,FH-GH=1,求GK长.20.(6分)小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图1,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a1+b1=c1.21.(6分)荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?22.(8分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.23.(8分)阅读下面的材料:解方程,这是一个一元四次方程,根据该方程的特点,它的解法通常采用换元法降次:设,那么,于是原方程可变为,解得.当时,,∴;当时,,∴;原方程有四个根:.仿照上述换元法解下列方程:(1)(2).24.(8分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.25.(10分)如图,在平面直角坐示系xOy中,直线与直线交于点A(3,m).(1)求k,m的値;(2)己知点P(n,n),过点P作垂直于y轴的直线与直线交于点M,过点P作垂直于x轴的直线与直线交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.26.(10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】
直接根据进行计算即可.【题目详解】解:;故选:A.【题目点拨】本题考查了二次根式的计算与化简,解题的关键是熟练掌握二次根式的运算法则.2、C【解题分析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.3、B【解题分析】
分式方程去分母转化为整式方程,故利用的数学思想是转化思想.【题目详解】解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是转化思想.故选B.【题目点拨】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.4、C【解题分析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【题目详解】解:A、因为52+62≠72,所以三条线段不能组成直角三角形;B、因为72+82≠92,所以三条线段不能组成直角三角形;C、因为62+82=102,所以三条线段能组成直角三角形;D、因为52+72≠92,所以三条线段不能组成直角三角形;故选:C.【题目点拨】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.5、B【解题分析】
,要注意的双重非负性:.【题目详解】;;;,故选B.【题目点拨】本题考查平方根的计算,重点是掌握平方根的双重非负性.6、A【解题分析】
根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数。一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.【题目详解】一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故答案为A.【题目点拨】此题主要考查对频数定义的理解,熟练掌握即可得解.7、D【解题分析】
首先根据数轴可以得到a、b的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【题目详解】由数轴上各点的位置可知:a<0<b.∴|a+b|−a=a+b−a=b.故选D.【题目点拨】此题考查整式的加减,实数与数轴,解题关键在于结合数轴分析a,b的大小.8、A【解题分析】
由点A的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象上点的坐标特征逐一验证四个选项中的点是否在该函数图象上即可得出结论.【题目详解】将A(2,3)代入y=kx,得:3=2k,
∴k=32,
∴一次函数的解析式为y=32x.
当x=1时,y=32×1=32,
∴点(1,32)在函数y=32的图象上;
当x=2时,y=32×2=3,
∴点(2,-3)不在函数y=32的图象上;
当x=4时,y=32×4=6,
点(4,5)不在函数y=32的图象上;
当x=-2时,y=32×(-2)=-3,
点(【题目点拨】考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征逐一验证四个选项中的点是否在该函数图象上是解题的关键.9、A【解题分析】分析:分别把点代入直线y=-x+1,看是否满足即可.详解:当x=1时,y=-x+1=0;当x=2时,y=-x+1=-1;当x=3时,y=-x+1=-2;当x=4时,y=-x+1=-3;所以点(2,-1)在直线y=-x+1上.故选A.点睛:本题主要考查了一次函数上的坐标特征,关键在于理解一次函数上的坐标特征.10、A【解题分析】
根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【题目详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【题目点拨】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.
错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.
二、填空题(每小题3分,共24分)11、【解题分析】
根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律根据规律不难求得第2019个菱形的边长.【题目详解】连接DB交AC于M点,
∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=2AM=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n-1,当n=2019时,第2019个菱形的边长为()2018,故答案为.【题目点拨】本题考查了菱形的性质、含30°角的直角三角形的运用;根据第一个和第二个菱形的边长得出规律是解决问题的关键.12、或或【解题分析】
分及两种情况:当时,由三角形内角和定理结合可得出为等边三角形,利用等边三角形的性质可求出的长;当时,通过解直角三角形可求出,的长,再由或可求出的长.综上,此题得解.【题目详解】解:I.当时,如图1所示.,,,为等边三角形,;II.当时,如图2所示.在中,,,,.在中,,,或.故答案为12或或.【题目点拨】本题考查了含30度角的直角三角形、解直角三角形以及等边三角形的判定与性质,分及两种情况,求出的长是解题的关键.13、1【解题分析】
设小明答对的题数是x道,则答错或没答的为(20-x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【题目详解】设小明答对的题数是x道,则答错或没答的为(20-x)道,根据题意可得:5x-2(20-x)≥60,解得:x≥14,∵x为整数,∴x的最小值为1.故答案是:1.【题目点拨】考查了一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.14、.【解题分析】
试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴An(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点An+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.15、0.7【解题分析】
用通话时间不足10分钟的通话次数除以通话的总次数即可得.【题目详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.16、6.【解题分析】
根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB即可.【题目详解】过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为6.17、抽样调查【解题分析】
了解一批节能灯的使用寿命,对灯泡进行调查具有破坏性,故不宜采用普查,应采用抽样调查.【题目详解】了解一批节能灯的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批节能灯全部用于实验。所以填抽样调查。【题目点拨】本题考查了抽样调查的定义,掌握抽样调查和普查的定义是解决本题的关键.18、【解题分析】
随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【题目详解】解:抽中数学题的概率为,
故答案为:.【题目点拨】本题考查了概率,正确利用概率公式计算是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析;(3)CN=25.【解题分析】
(1)如图,延长EF交CD延长线于点Q,先证明CQ=CE,再证明△FQD≌△FEA,根据全等三角形的对应边相等可得EF=FQ,再根据等腰三角形的性质即可得CF⊥EF;(2)分别过点F、H作FM⊥CE,HP⊥CD,垂足分别为M、P,证明四边形DFHP是矩形,继而证明△HPC≌△FMK,根据全等三角形的性质即可得CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,先证明得到FG=CG=GE,∠CGT=2,再由FG是BC的中垂线,可得BG=CG,∠CGT=∠FGK=∠BGT=2,再证明HN∥BG,得到四边形HGBN是平行四边形,继而证明△HNC≌△KGF,推导可得出HT=CT=TN,由FH-HG=1,所以设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,继而根据,可得关于m的方程,解方程求得m的值即可求得答案.【题目详解】(1)如图,延长EF交CD延长线于点Q,∵矩形ABCD,AB∥CD,∴∠AEF=∠CQE,∠A=∠QDF,又∵EF平分∠AEC,∴∠AEF=∠CEF,∴∠CEF=∠CQE,∴CQ=CE,∵点F是AD中点,∴AF=DF,∴△FQD≌△FEA,∴EF=FQ,又∵CE=CQ,∴CF⊥EF;(2)分别过点F、H作FM⊥CE,HP⊥CD,垂足分别为M、P,∵CQ=CE,CF⊥EF,∴∠DCF=∠FCE,又∵FD⊥CD,∴FM=DF,∵FG//AB,∴∠DFH=∠DAC=90°,∴∠DFH=∠FDP=∠DPH=90°,∴四边形DFHP是矩形,∴DF=HP,∴FM=DF=HP,∵∠CHG=∠BCE,AD∥BC,FG∥CD,∴∠K=∠BCE=∠CHG=∠DCH,又∵∠FMK=∠HPC=90°,∴△HPC≌△FMK,∴CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,∵FG∥CD,∴∠DCF=∠CFG,∴∠FCG=∠CFG,∴FG=CG,∵CF⊥EF,∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,∴∠GFE=∠FEG,∴GF=FE,∴FG=CG=GE,∠CGT=2,∵FG是BC的中垂线,∴BG=CG,∠CGT=∠FGK=∠BGT=2,∵∠CHG=∠BCE=90°-2,∠CHN=90°,∴∠GHN=∠FGK=∠BGT=2,∴HN∥BG,∴四边形HGBN是平行四边形,∴HG=BN,HN=BG=CG=FG,∴△HNC≌△KGF,∴GK=CN,∠HNC=∠FGK=∠NHT=2,∴HT=CT=TN,∵FH-HG=1,∴设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,∵GT=,∴CN=2HT=11+2m,∵,∴∴(舍去),,∴CN=GK=2HT=25.【题目点拨】本题考查的是四边形综合题,涉及了等腰三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,矩形的性质与判定,三角形外角的性质等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.20、见解析【解题分析】
根据S正方形EFGH=4S△AED+S正方形ABCD,列式可得结论.【题目详解】解:∵AE=a,DE=b,AD=c,∴S正方形EFGH=EH1=(a+b)1,S正方形EFGH=4S△AED+S正方形ABCD=4×ab+c1,∴(a+b)1=1ab+c1,∴a1+b1=c1.【题目点拨】本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.21、(1)第一批荔枝每件进价为25元;(2)剩余的荔枝每件售价至少25元.【解题分析】
(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x-5)元,根据数量=总价÷单价结合第二批购进荔枝的件数是第一批购进件数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第二次购进荔枝的件数,设剩余的荔枝每件售价为y元,根据总利润=单件利润×销售数量结合第二批荔枝的销售利润不少于300元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【题目详解】解:(1)设第一批荔枝每件进价为元,则第二批荔枝每件进价为元,则有,解得:,经检验是原方程的根。所以,第一批荔枝每件进价为25元。(2)设剩余的荔枝每件售价元,第二批荔枝每件进价为20元,共40件,,解得:所以,剩余的荔枝每件售价至少25元.【题目点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22、(1)证明见解析;(2)24【解题分析】试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE=,所以,S菱形ABCD=6×3=18.考点:1.菱形的性质;2..矩形的判定.23、(1);(2),为原方程的解【解题分析】
(1)设,则由已知方程得到:,利用因式分解法求得该方程的解,然后解关于x的一元二次方程;(2)设,则由已知方程得到:,利用因式分解法求得该方程的解,然后进行检验即可.【题目详解】(1)令∴∴∴,∴舍,∴(2)令∴∴∴∴,∴,∴,经检验,,为原方程的解.【题目点拨】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.24、(1)作图见解析;(2)证明见解析;【解题分析】
(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.【题目详解】解:(1)如图:(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60335-2-15:2024 EXV-CMV EN Household and similar electrical appliances - Safety - Part 2-15: Particular requirements for appliances for heating liquids
- 淮阴师范学院《田径与户外运动(1)》2021-2022学年第一学期期末试卷
- 淮阴师范学院《市场调查与预测》2023-2024学年第一学期期末试卷
- 淮阴师范学院《民间美术》2022-2023学年第一学期期末试卷
- 淮阴师范学院《影视特效制作》2023-2024学年第一学期期末试卷
- DB6505T186-2024双峰种公驼保健技术规程
- 文书模板-《护士节系列活动方案》
- 搪瓷工艺的技术革新与工业升级考核试卷
- 微软办公软件应用培训考核试卷
- 低温仓储系统的运行与调试考核试卷
- GB/T 42455.2-2024智慧城市建筑及居住区第2部分:智慧社区评价
- 地 理期中测试卷(一) 2024-2025学年地理湘教版七年级上册
- 2024年山东济南轨道交通集团限公司招聘95人历年高频难、易错点500题模拟试题附带答案详解
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 华为财务管理(6版)-华为经营管理丛书
- 江苏省电力公司员工奖惩办法(试行)
- 毕业设计(论文)汽车照明系统常见故障诊断与排除
- 中国建设银行网上银行电子回单
- (完整版)百万英镑课文
- 国内外中小学家校合作研究综述3
- 装配式挡土墙施工方案(完整版)
评论
0/150
提交评论