陈经纶中学2024届数学八年级第二学期期末监测模拟试题含解析_第1页
陈经纶中学2024届数学八年级第二学期期末监测模拟试题含解析_第2页
陈经纶中学2024届数学八年级第二学期期末监测模拟试题含解析_第3页
陈经纶中学2024届数学八年级第二学期期末监测模拟试题含解析_第4页
陈经纶中学2024届数学八年级第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陈经纶中学2024届数学八年级第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体 B.样本 C.个体 D.样本容量2.生物学家发现了一种病毒,其长度约为,将数据0.00000032用科学记数法表示正确的是()A. B. C. D.3.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差:甲乙丙丁(秒)303028281.211.051.211.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁4.如果一次函数y=kx+不经过第三象限,那么k的取值范围是()A.k<0 B.k>0 C.k≤0 D.k≥05.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6 D.126.某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是()A.1280(1+x)=1600 B.1280(1+2x)=1600C.1280(1+x)2=2880 D.1280(1+x)+1280(1+x)2=28807.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.8.一个三角形三边的比为1:2:5,则这个三角形是()A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形9.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BD B.AC∥BD C.DF=EF D.∠CBD=∠E10.计算的结果是A.﹣3 B.3 C.﹣9 D.9二、填空题(每小题3分,共24分)11.在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.12.如图,平行四边形的对角线相交于点,且,过点作,交于点.若的周长为,则______.13.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是_______.14.在Rt△ABC中,∠C=90°,若a=6,b=8,则c=________.15.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.16.在函数中,自变量x的取值范围是__________________.17.已知一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,那么b=_____.18.若一次函数的图象,随的增大而减小,则的取值范围是_____.三、解答题(共66分)19.(10分)如图,在边长为1个单位长度的小正方形组成的两个中,点都是格点.(1)将向左平移6个单位长度得到.请画出;(2)将绕点按逆时针方向旋转得到,请画出.20.(6分)先化简,再求值,从-1、1、2中选择一个你喜欢的且使原式有意义的的值代入求值.21.(6分)如图,四边形ABCD是正方形,点E是边BC上的一点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,当点E是BC的中点时,猜测AE与EF的关系,并说明理由.(2)如图2,当点E是边BC上任意一点时,(1)中所猜测的AE与EF的关系还成立吗?请说明理由.22.(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.23.(8分)如图,在平面直角坐标系xOy中,已知直线AB:y=x+4交x轴于点A,交y轴于点B.直线CD:y=-x-1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标.(2)若点P是射线MD的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系,并指出x的取值范围.(3)当S=10时,平面直角坐标系内是否存在点E,使以点B,E,P,M为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.24.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.25.(10分)某工厂为了解甲、乙两个部门员工的生产技能情况,从甲、乙两个部门各随机抽取20名员工,进行生产技能测试,测试成绩(百分制)如下:甲

78

8674

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77乙

93

7388

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40(说明:成绩80分及以上为优秀,70-79分为良好,60-69分为合格,60分以下为不合格)(1)请填完整表格:部门平均数中位数众数甲78.375乙7880.5

(2)从样本数据可以推断出部门员工的生产技能水平较高,请说明理由.(至少从两个不同的角度说明推断的合理性).26.(10分)小明家准备给边长为6m的正方形客厅用黑色和白色两种瓷砖铺设,如图所示:①黑色瓷砖区域Ⅰ:位于四个角的边长相同的小正方形及宽度相等的回字型边框(阴影部分),②白色瓷砖区域Ⅱ:四个全等的长方形及客厅中心的正方形(空白部分).设四个角上的小正方形的边长为x(m).(1)当x=0.8时,若客厅中心的正方形瓷砖铺设的面积为16m2,求回字型黑色边框的宽度;(2)若客厅中心的正方形边长为4m,白色瓷砖区域Ⅱ的总面积为26m2,求x的值.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

根据总体、个体、样本、样本容量的定义逐个判断即可.【题目详解】解:抽出的500名考生的数学成绩是样本,故选B.【题目点拨】本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.2、B【解题分析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.00000032=3.2×10-1.故选:B.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、D【解题分析】在这四位同学中,丙、丁的平均时间一样,比甲、乙的用时少,但丁的方差小,成绩比较稳定,由此可知,可选择丁,故选D.4、A【解题分析】

根据一次函数y=kx+b的图象与k、b之间的关系,即可得出k的取值范围.【题目详解】∵一次函数y=kx+的图象不经过第三象限,∴一次函数y=kx+的图象经过第一、二、四象限,∴k<1.故选:A.【题目点拨】本题考查了一次函数的图象与系数k,b的关系,熟练掌握一次函数的图象的性质是解题的关键.5、C【解题分析】

首先根据这个正多边形的每个内角的度数都等于相邻外角的2倍,可得:这个正多边形的外角和等于内角和的2倍;然后根据这个正多边形的外角和等于310°,求出这个正多边形的内角和是多少,进而求出该正多边形的边数是多少即可.【题目详解】310°×2÷180°+2=720°÷180°+2=4+2=1∴该正多边形的边数是1.故选C.【题目点拨】此题主要考查了多边形的内角与外角的计算,解答此题的关键是要明确:(1)多边形内角和定理:(n-2)•180(n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为310°.6、C【解题分析】

根据2017年及2019年该地投入异地安置资金,即可列出关于x的一元二次方程.【题目详解】解:设从2017年到2019年该地投入异地安置资金的年平均增长率为x根据题意得:1280(1+x)2=1280+1600=2880.故选C.【题目点拨】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.7、B【解题分析】

结合中心对称图形的概念求解即可.【题目详解】解:A、不是中心对称图形,本选项错误;

B、是中心对称图形,本选项正确;

C、不是中心对称图形,本选项错误;

D、不是中心对称图形,本选项错误.

故选:B.【题目点拨】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、B【解题分析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】解:这个三角形是直角三角形,理由如下:

因为边长之比满足1:2:5,

设三边分别为x、2x、5x,

∵(x)2+(2x)²=(5x)²,

即满足两边的平方和等于第三边的平方,

∴它是直角三角形.

故选B.【题目点拨】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9、C【解题分析】

由旋转的性质知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC∥BD得∠CBD=∠C,从而得出∠CBD=∠E.【题目详解】由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选C.【题目点拨】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.10、B【解题分析】

利用二次根式的性质进行化简即可.【题目详解】=|﹣3|=3.故选B.二、填空题(每小题3分,共24分)11、6+6【解题分析】

根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=12【题目详解】解:如图:过点E作EM⊥BC,垂直为M,

矩形ABCD中,AB=2,BC=6,

∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,

在Rt△ABD中,BD=22+62=210,

又∵点G、H分别是OB、OD的中点,

∴GH=12BD=10,

当四边形EGFH为矩形时,GH=EF=10,

在Rt△EMF中,FM=(10)2-22=6,

易证△BOF≌△DOE

(AAS),

∴BF=DE,

∴AE=FC,

设BF=x,则FC=6-x,由题意得:x-(6-x)=6,或(6-x)-x=6,,

∴x=【题目点拨】考查矩形的性质、直角三角形的性质,勾股定理等知识,合理的作辅助线,将问题转化显得尤为重要,但是,分情况讨论容易受图形的影响而被忽略,应切实注意.12、6.【解题分析】

根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,即可解答.【题目详解】∵ABCD是平行四边形,∴OA=OC,AD=BC,AB=CD∵OM⊥AC,∴AM=MC.∴△CDM的周长=AD+CD=9,BC=9-3=6故答案为6.【题目点拨】此题考查平行四边形的性质,解题关键在于得出MC=MA13、1【解题分析】

首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【题目详解】第五组的频数是10×0.2=8,则第六组的频数是10-5-10-6-7-8=1.故答案是:1.【题目点拨】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.14、10【解题分析】

根据勾股定理c为三角形边长,故c=10.15、①②③④⑤【解题分析】

由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1,由勾股定理求出x=2,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;分别求出△EGC,△AEF的面积,可以判断④,由,可求出△FGC的面积,故此可对⑤做出判断.【题目详解】解:解:∵四边形ABCD是正方形,

∴AB=AD=DC=6,∠B=D=90°,

∵CD=2DE,

∴DE=1,

∵△ADE沿AE折叠得到△AFE,

∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,

∴AF=AB,

∵在Rt△ABG和Rt△AFG中,,

∴Rt△ABG≌Rt△AFG(HL).

∴①正确;

∵Rt△ABG≌Rt△AFG,

∴BG=FG,∠AGB=∠AGF.

设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1.

在Rt△ECG中,由勾股定理得:CG1+CE1=EG1.

∵CG=6-x,CE=4,EG=x+1,

∴(6-x)1+41=(x+1)1,解得:x=2.

∴BG=GF=CG=2.

∴②正确;

∵CG=GF,

∴∠CFG=∠FCG.

∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,

∴∠CFG+∠FCG=∠AGB+∠AGF.

∵∠AGB=∠AGF,∠CFG=∠FCG,

∴∠AGB=∠FCG.

∴AG∥CF.

∴③正确;

∵S△EGC=×2×4=6,S△AEF=S△ADE=×6×1=6,

∴S△EGC=S△AFE;

∴④正确,

∵△CFG和△CEG中,分别把FG和GE看作底边,

则这两个三角形的高相同.

∴,

∵S△GCE=6,

∴S△CFG=×6=2.6,

∴⑤正确;

故答案为①②③④⑤.【题目点拨】本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.16、x≥0且x≠1【解题分析】

根据被开方数是非负数且分母不等于零,可得答案.【题目详解】由题意,得x≥0且x﹣1≠0,解得x≥0且x≠1,故答案为:x≥0且x≠1.【题目点拨】本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不等于零得出不等式是解题关键.17、1.【解题分析】

将原函数解析式变形为一般式,结合一次函数图象在y轴上的截距,即可得出关于b的一元一次方程,解之即可得出结论.【题目详解】∵y=2(x﹣2)+b=2x+b﹣4,且一次函数y=2(x﹣2)+b的图象在y轴上的截距为5,∴b﹣4=5,解得:b=1.故答案为:1.【题目点拨】本题考查了一次函数图象上点的坐标特征,牢记截距的定义是解题的关键.18、【解题分析】

利用函数的增减性可以判定其比例系数的符号,从而确定m的取值范围.【题目详解】解:∵一次函数y=(m-1)x+2,y随x的增大而减小,∴m-1<0,∵m<1,故答案为:m<1.【题目点拨】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.三、解答题(共66分)19、(1)图见详解;(1)图见详解.【解题分析】

(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;

(1)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A1B1C1.【题目详解】解:(1)如图所示:△A1B1C1,即为所求;

(1)如图所示:△A1B1C1,即为所求.【题目点拨】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.20、4【解题分析】

根据分式的运算法则即可求出答案.【题目详解】原式==x+2,由分式有意义的条件可知:x=2,∴原式=4,【题目点拨】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21、(1)AE=EF;(2)AE=EF成立,理由见解析.【解题分析】

(1)取AB的中点M,连接EM,根据同角的余角相等得到∠BAE=∠CEF,然后易证ΔMAE≅ΔCEF,问题得解;(2)在AB上取点P,使AP=CE,连接EP,同(1)的方法相同,证明ΔPAE≅ΔCEF即可;【题目详解】(1)证明:如图1,取AB的中点M,连接EM,∵四边形ABCD是正方形,∴AB=BC,∠B=∠BCD=90°,∵AM=EC,∴BM=BE,∴∠BME=45°,∠AME=135°,∵CF是正方形外角的平分线,∴∠ECF=135°,∵∠AEF=90°,∠B=90°,∴∠BAE=∠CEF,在ΔMAE和ΔCEF中,∠AME=∠ECFAM=CE∴ΔMAE≅ΔCEF,∴AE=EF;(2)如图2,在AB上取点P,使AP=CE,连接EP,∵四边形ABCD是正方形,∴AB=BC,∠B=∠BCD=90°,∵AP=EC,∴BP=BE,∴∠BPE=45°,∠APE=135°,∵CF是正方形外角的平分线,∴∠ECF=135°,∵∠AEF=90°,∠B=90°,∴∠BAE=∠CEF,在ΔPAE和ΔCEF中,∠PAE=∠CEFAP=EC∴ΔPAE≅ΔCEF,∴AE=EF;【题目点拨】此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.22、(1)y=(2)75(千米/小时)【解题分析】

(1)先根据图象和题意知道,甲是分段函数,所以分别设0<x≤6时,y=k1x;6<x≤14时,y=kx+b,根据图象上的点的坐标,利用待定系数法可求解.

(2)注意相遇时是在6-14小时之间,求交点时应该套用甲中的函数关系式为y=-75x+1050,直接把x=7代入即可求相遇时y的值,再求速度即可.【题目详解】(1)①当0<x≤6时,设y=k1x把点(6,600)代入得k1=100所以y=100x;②当6<x≤14时,设y=kx+b∵图象过(6,600),(14,0)两点∴6解得k=-∴y=−75x+1050∴y=(2)当x=7时,y=−75×7+1050=525,V乙=5257=75(千米/小时23、(1)B(0,4),D(0,-1);(2)();(3)存在,共有3个,E点为(4,)、(-6,-4)和【解题分析】

(1)利用y轴上的点的坐标特征即可得出结论.(2)先求出点M的坐标,再用三角形的面积之和即可得出结论.(3)分三种情况,根据题意只写出其中一个求解过程即可,利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.【题目详解】(1)将x=0代入y=x+4,y=+4解得将y=0代入y=-x-1,y=--1解得∴B(0,4),D(0,-1)(2)在解方程组得M点的坐标是,∵BD=5,当P点在轴左侧时,如图(1):;当P点在轴右侧时,如图(2):.总之,所求的函数关系式是()(3)存在,共有3个.当S=10时,求得P点为(-1,),若平行四边形以MB、MP为邻边,如图,BE∥MD,PE∥MB,可设直线BE的解析式为,将B点坐标代入得,所以BE的解析式为;同样可求得PE的解析式为,解方程组得E点为(4,)[{备注:同理可证另外两个点,另两个点的坐标为(-6,-4)和}【题目点拨】本题考查了一次函数的几何问题,掌握一次函数的性质、三角形的面积公式、对角线互相平分的四边形是平行四边形、线段的中点坐标的确定方法是解题的关键.24、(1)详见解析;(2)1【解题分析】

(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;(2)作OF⊥BC于F.求出EC、OF即可解决问题;【题目详解】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论