2024届广西南宁八中学八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
2024届广西南宁八中学八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
2024届广西南宁八中学八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
2024届广西南宁八中学八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
2024届广西南宁八中学八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西南宁八中学八年级数学第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形2.若一个直角三角形的两边长为12、13,则第三边长为()A.5 B.17 C.5或17 D.5或3133.A. B. C. D.4.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为()A.y=x+2 B.y=﹣x+2 C.y=x+2或y=﹣x+2 D.y=-x+2或y=x-25.下列性质中,矩形具有而一般平行四边形不具有的是()。A.对边相等 B.对角相等 C.对角线相等 D.对边平行6.由线段a、b、c组成的三角形不是直角三角形的是A.,, B.,,C.,, D.,,7.如果点A(﹣2,a)在函数yx+3的图象上,那么a的值等于()A.﹣7 B.3 C.﹣1 D.48.受今年五月份雷暴雨影响,深圳某路段长120米的铁路被水冲垮了,施工队抢分夺秒每小时比原计划多修5米,结果提前4小时开通了列车.若原计划每小时修x米,则所列方程正确的是()A. B. C. D.9.下列命题中是真命题的是()①4的平方根是2②有两边和一角相等的两个三角形全等③连结任意四边形各边中点的四边形是平行四边形④所有的直角都相等A.0个 B.1个 C.2个 D.3个10.如图以正方形的一边为边向下作等边三角形,则的度数是()A.30° B.25° C.20° D.15°二、填空题(每小题3分,共24分)11.如图,在中,,分别以两直角边,为边向外作正方形和正方形,为的中点,连接,,若,则图中阴影部分的面积为________.12.若数据,,…,的方差为6,则数据,,…,的方差是______.13.菱形有一个内角是120°,其中一条对角线长为9,则菱形的边长为____________.14.已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.15.如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为_____.16.已知分式,当x=1时,分式无意义,则a=___________.17.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼_______条.18.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为_____.三、解答题(共66分)19.(10分)如图,矩形的顶点A、C分别在、的正半轴上,反比例函数()与矩形的边AB、BC交于点D、E.(1)若,则的面积为_________;(2)若D为AB边中点.①求证:E为BC边中点;②若的面积为4,求的值.20.(6分)温度的变化是人们经常谈论的话题,请根据下图解决下列问题.(1)这一天的最高温度是多少?是在几时到达的?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?21.(6分)某市米厂接到加工大米任务,要求天内加工完大米.米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止,设甲、乙两车间各自加工大米数量与甲车间加工时间(天)之间的关系如图1所示;未加工大米与甲车间加工时间(天)之间的关系如图2所示,请结合图像回答下列问题(1)甲车间每天加工大米__________;=______________;(2)直接写出乙车间维修设备后,乙车间加工大米数量与(天)之间的函数关系式,并指出自变量的取值范围.22.(8分)如图,在四边形ABCD中,AB=4,BC=3,CD=12,AD=13,∠B=90°,连接AC.求四边形ABCD的面积.23.(8分)如图,在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.若点P、Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P、Q的“涵矩形”。下图为点P、Q的“涵矩形”的示意图.(1)点B的坐标为(3,0);①若点P的横坐标为32,点Q与点B重合,则点P、Q的“涵矩形”的周长为②若点P、Q的“涵矩形”的周长为6,点P的坐标为(1,4),则点E(2,1),F(1,2),G(4,0)中,能够成为点P、Q的“涵矩形”的顶点的是.(2)四边形PMQN是点P、Q的“涵矩形”,点M在△AOB的内部,且它是正方形;①当正方形PMQN的周长为8,点P的横坐标为3时,求点Q的坐标.②当正方形PMQN的对角线长度为/2时,连结OM.直接写出线段OM的取值范围.24.(8分)已知是等边三角形,D是BC边上的一个动点点D不与B,C重合是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.如图1,求证:≌;请判断图1中四边形BCEF的形状,并说明理由;若D点在BC边的延长线上,如图2,其它条件不变,请问中结论还成立吗?如果成立,请说明理由.25.(10分)在直角坐标系中,直线l1经过(2,3)和(-1,-3):直线l2经过原点O,且与直线l1交于点P(-2,a).(1)求a的值;(2)(-2,a)可看成怎样的二元一次方程组的解?26.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,当时,.求这个函数的表达式;在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】试题分析:A.对角线互相垂直的四边形不一定是菱形,故本选项错误;B.一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C.对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D.对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D.考点:命题与定理.2、D【解题分析】

根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【题目详解】当12,13为两条直角边时,第三边=122+13当13,12分别是斜边和一直角边时,第三边=132-12故选D.【题目点拨】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.3、C【解题分析】

根据根式的减法运算,首先将化简,再进行计算.【题目详解】解:故选C【题目点拨】本题主要考查根式的减法,关键在于化简,应当熟练掌握.4、C【解题分析】

先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【题目详解】∵一次函数y=kx+b(k≠0)图象过点(0,1),∴b=1,令y=0,则x=-,∵函数图象与两坐标轴围成的三角形面积为1,∴×1×|-|=1,即||=1,解得:k=±1,则函数的解析式是y=x+1或y=-x+1.故选C.5、C【解题分析】

由矩形的性质和平行四边形的性质即可得出结论.【题目详解】解:∵矩形的对边相等,对角相等,对角线互相平分且相等;平行四边形的对边相等,对角相等,对角线互相平分;∴矩形具有而平行四边形不具有的性质是对角线相等;故选:C.【题目点拨】本题考查了矩形的性质、平行四边形的性质;熟练掌握矩形和平行四边形的性质是解决问题的关键.6、D【解题分析】

A、72+242=252,符合勾股定理的逆定理,是直角三角形;

B、42+52=()2,符合勾股定理的逆定理,是直角三角形;

C、12+()2=()2,符合勾股定理的逆定理,是直角三角形;

D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.

故选D.7、D【解题分析】

把点A的坐标代入函数解析式,即可得a的值.【题目详解】根据题意,把点A的坐标代入函数解析式,得:a(﹣2)+3=1.故选D.【题目点拨】本题考查了一次函数图象上点的坐标特征,是基础题型.8、A【解题分析】

关键描述语为:提前4小时开通了列车;等量关系为:计划用的时间—实际用的时间.【题目详解】题中原计划修小时,实际修了小时,可列得方程.故选:.【题目点拨】本题考查了由实际问题抽象出分式方程,从关键描述语找到等量关系是解决问题的关键.9、C【解题分析】

根据平方根的概念、全等三角形的判定定理、中点四边形的性质判断即可.【题目详解】解:4的平方根是±2,①是假命题;有两边及其夹角相等的两个三角形全等,②是假命题;连结任意四边形各边中点的四边形是平行四边形,③是真命题;所有的直角都相等,④是真命题.故选C.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、D【解题分析】

由正方形的性质、等边三角形的性质可得,,再根据,得到,故利用即可求解.【题目详解】解:四边形为正方形,为等边三角形,∴,∴.∵,∴.∴.故选D.【题目点拨】本题考查了正方形的性质及等边三角形的性质;求得并利用其性质做题是解答本题的关键.二、填空题(每小题3分,共24分)11、25【解题分析】

首先连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,然后根据直角三角形斜边中线定理,即可得出,,又由正方形的性质,得出AC=CD,BC=CF,阴影部分面积即为△CDO和△CFO之和,经过等量转换,即可得解.【题目详解】连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,如图所示∵,,点O为AB的中点,∴,又∵正方形和正方形,∴AC=CD,BC=CF∴【题目点拨】此题主要考查勾股定理、直角三角形中位线定理以及正方形的性质,熟练掌握,即可解题.12、1.【解题分析】

根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加2,所以波动不会变,方差不变.【题目详解】原来的方差,现在的方差==1,方差不变.故答案为:1.【题目点拨】此题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.13、9或【解题分析】

如图,根据题意得:∠BAC=120°,易得∠ABC=60°,所以△ABC为等边三角形.如果AC=9,那么AB=9;如果BD=9,由菱形的性质可得边AB的长.【题目详解】∵四边形ABCD是菱形,∴AD∥BC,∠ABD=∠CBD,OA=OC,OB=OD,AC⊥BD,AB=BC,∵∠BAD=120°,∴∠ABC=60°,∴△ABC为等边三角形,如果AC=9,则AB=9,如果BD=9,则∠ABD=30°,OB=,∴OA=AB,在Rt△ABO中,∠AOB=90°,∴AB2=OA2+OB2,即AB2=(AB)2+()2,∴AB=3,综上,菱形的边长为9或3.【题目点拨】本题考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.注意分类讨论思想的运用.14、1【解题分析】

根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.【题目详解】解:设这个凸多边形的边数是n,根据题意得

(n-2)•110°=3×360°,

解得n=1.

故这个凸多边形的边数是1.

故答案为:1.【题目点拨】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.15、2cm.【解题分析】试题解析:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC=8cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=6cm,∴DE=AD﹣AE=8﹣6=2(cm).16、1【解题分析】

把x=1代入分式,根据分式无意义得出关于a的方程,求出即可【题目详解】解:把x=1代入得:,此时分式无意义,

∴a-1=0,

解得a=1.

故答案为:1.【题目点拨】本题考查了分式无意义的条件,能得出关于a的方程是解此题的关键.17、1500【解题分析】

300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占比例为10%.而有标记的共有150条,据此比例即可解答.【题目详解】150÷(30÷300)=1500(条).故答案为:1500【题目点拨】本题考查的是通过样本去估计总体.18、4cm【解题分析】

根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.【题目详解】解:∵四边形ABCD是平行四边形,

∴AO=OC,OD=OB,

又∵AC=10cm,BD=6cm,

∴AO=5cm,DO=3cm,【题目点拨】本题考查了平行四边形的性质、勾股定理,找到四边形中的三角形是解题的关键.三、解答题(共66分)19、(1)1;(2)①见解析;②【解题分析】

(1)根据题意,可设点E(a,),继而由三角形的面积公式即可求的面积;(2)①设,则,,继而代入反比例函数可得x与a的关系,继而根据点B、点E的横坐标即可求证结论;②利用分割法求出,再将数据代入解方程即可.【题目详解】解:(1)根据题意,可设点E(a,),∴S△OCE=故的面积为1;(2)①证明:设,∵为边中点,∴,∵点,在矩形的同一边上,∴,又∵点在反比例函数图像上,∴,,即,∴为边中点,(3),,∴,∴.【题目点拨】本题考查反比例函数的图象与性质及矩形、三角形的面积公式,解题的关键是正确理解题意并掌握反比例函数的系数k的几何意义.20、(1)这一天的最高温度是37℃,是在15时到达的;(2)温差为,经过的时间为时;(3)从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.【解题分析】

(1)观察图象,可知最高温度为37℃,时间为15时;(2)由(1)中得出的最高温度-最低温度即可求出温差,也可求得经过的时间;(3)观察图象可求解.【题目详解】解:(1)根据图像可以看出:这一天的最高温度是37℃,,是在15时到达的;(2)∵最高温是15时37℃,最低温是3时23℃,∴温差为:,则经过的时间为::(时);(3)观察图像可知:从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.【题目点拨】本题考查了函数的图象,属于基础题,要求同学们具备一定的观察图象能力,能从图象中获取解题需要的信息.21、解:(1);;(2),【解题分析】

(1)由图2可知,乙停工后,第二天均为甲生产的即186-161=20;第一天总共生产220-181=31,即a+20=31,所以a为11;

(2)由图1可知,函数关系式经过点(2,11)和点(1,120),即可得到函数关系式.且2≤x≤1.【题目详解】解:(1)由图2可知,乙停工后,第二天均为甲生产的,即186-161=20;

∴甲车间每天加工大米20t

第一天总共生产:220-181=31,

即a+20=31,所以a为11;

故答案为20(t),11

(2)设函数关系式y=kx+b

由图1可知,函数关系式经过点(2,11)和点(1,120),

代入得:y=31x-11,且2≤x≤1.【题目点拨】本题主要考查一次函数的知识点,熟练掌握一次函数的性质是解答本题的关键.22、36【解题分析】

由AB=4,BC=3,∠B=90°可得AC=1.可求得S△ABC;再由AC=1,AD=13,CD=12,可得△ACD为直角三角形,进而求得S△ACD,可求S四边形ABCD=S△ABC+S△ACD.【题目详解】∵∠ABC=90°,AB=4,BC=3,∴AC=∵CD=12,AD=13,∴∴∴∠ACD=90°∴,∴【题目点拨】此题考查勾股定理及逆定理的应用,判断△ACD是直角三角形是关键.23、(1)①1,②(1,2);(2)①(1,5)或(5,1),②5【解题分析】

(1)①根据题意求出PE,EQ即可解决问题.

②求出点P、Q的“涵矩形”的长与宽即可判断.

(2)①求出正方形的边长,分两种情形分别求解即可解决问题.

②点M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D.求出OM的最大值,最小值即可判断.【题目详解】解:(1)①如图1中,

由题意:矩形PEQF中,EQ=PF=3-32=32,

∵EP∥OA,

∴AP=PQ,

∴PE=QF=12OA=3,

∴点P、Q的“涵矩形”的周长=(3+32)×2=1.

②如图2中,∵点P、Q的“涵矩形”的周长为6,

∴邻边之和为3,

∵矩形的长是宽的两倍,

∴点P、Q的“涵矩形”的长为2,宽为1,

∵P(1,4),F(1,2),

∴PF=2,满足条件,

∴F(1,2)是矩形的顶点.(2)①如图3中,

∵点P、Q的“涵矩形”是正方形,

∴∠ABO=45°,

∴点A的坐标为(0,6),

∴点B的坐标为(6,0),

∴直线AB的函数表达式为y=-x+6,

∵点P的横坐标为3,

∴点P的坐标为(3,3),

∵正方形PMQN的周长为8,

∴点Q的横坐标为3-2=1或3+2=5,

∴点Q的坐标为(1,5)或(5,1).②如图4中,

∵正方形PMQN的对角线为2,

∴PM=MQ=1,

易知M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D,

∵OE=OF=5,

∴EF=52,

∵OD⊥EF,

∴ED=DF,

∴OD=12EF=522,

∴OM的最大值为5,最小值为522【题目点拨】本题属于四边形综合题,考查了矩形的判定和性质,正方形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.24、(1)见解析;(2)四边形BCEF是平行四边形,理由见解析;(3)成立,理由见解析.【解题分析】

(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;(3)易证AF=AD,AB=AC,∠FAD=∠B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论