2024届广东省江门市恩平市数学八年级第二学期期末学业水平测试试题含解析_第1页
2024届广东省江门市恩平市数学八年级第二学期期末学业水平测试试题含解析_第2页
2024届广东省江门市恩平市数学八年级第二学期期末学业水平测试试题含解析_第3页
2024届广东省江门市恩平市数学八年级第二学期期末学业水平测试试题含解析_第4页
2024届广东省江门市恩平市数学八年级第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省江门市恩平市数学八年级第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若一组数据1,4,7,x,5的平均数为4,则x的值时()A.7 B.5 C.4 D.32.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2 B.4 C.8 D.163.下列曲线中不能表示是的函数的是A. B.C. D.4.如图,点O是AC的中点,将面积为4cm2的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB′C′D′,则图中阴影部分的面积是()A.1cm2 B.2cm2 C.3cm2 D.4cm25.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=6,BC=8,则CD等于(

)A.1 B.2 C.3 D.4.86.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③7.菱形、矩形、正方形都具有的性质是()A.对角线相等且互相平分 B.对角线相等且互相垂直平分C.对角线互相平分 D.四条边相等,四个角相等8.下列多边形中,不能够单独铺满地面的是()A.正三角形 B.正方形 C.正五边形 D.正六边形9.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B. C. D.10.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(

)A.甲 B.乙 C.丙 D.丁二、填空题(每小题3分,共24分)11.把化为最简二次根式,结果是_________.12.将一个有80个数据的一组数分成四组,绘出频数分布直方图,已知各小长方形的高的比为,则第二小组的频数为______.13.分式方程的解是_____.14.(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.15.一次函数(是常数,)的图象经过点,若,则的值是________.16.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.17.如果关于x的方程(m+2)x=8无解,那么m的取值范围是_____.18.等腰三角形的两边长分别为4和9,则第三边长为三、解答题(共66分)19.(10分)如右图所示,直线y1=-2x+3和直线y2=mx-1分别交y轴于点A,B,两直线交于点C(1,n).(1)求m,n的值;(2)求ΔABC的面积;(3)请根据图象直接写出:当y1<y2时,自变量的取值范围.20.(6分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.如图,当点A旋转到时,请你直接写出AH与AB的数量关系;如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.21.(6分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于C、D两点,C点的坐标是(4,-1),D点的横坐标为-1.(1)求反比例函数与一次函数的关系式;(1)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值?22.(8分)如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.(1)求S关于x的函数解析式;(2)当EFGH是正方形时,求S的值.23.(8分)电话计费问题,下表中有两种移动电话计费方式:温馨揭示:方式一:月使用费固定收(月收费:38元/月);主叫不超限定时间不再收费(80分钟以内,包括80分钟);主叫超时部分加收超时费(超过部分0.15元/);被叫免费。方式二:月使用费0元(无月租费);主叫限定时间0分钟;主叫每分钟0.35元/;被叫免费。(1)设一个月内用移动电话主叫时间为,方式一计费元,方式二计费元。写出和关于的函数关系式。(2)在平面直角坐标系中画出(1)中的两个函数图象,记两函数图象交点为点,则点的坐标为_____________________(直接写出坐标,并在图中标出点)。(3)根据(2)中函数图象,请直接写出如何根据每月主叫时间选择省钱的计费方式。24.(8分)一条笔直的公路上有甲乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地.设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象.(1)李越骑车的速度为______米/分钟;(2)B点的坐标为______;(3)李越从乙地骑往甲地时,s与t之间的函数表达式为______;(4)王明和李越二人______先到达乙地,先到______分钟.25.(10分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).(1)求线段CD的长;(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;(3)当点P在线段AD上运动时,求S与t的函数关系式.26.(10分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

运用平均数的计算公式即可求得x的值.【题目详解】解:依题意有:1+4+7+x+5=4×5,解得x=1.故选:D.【题目点拨】本题考查的是样本平均数的求法及运用,关键是熟练掌握平均数公式.2、A【解题分析】

解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为,新数据是在原来每个数上加上100得到,则新平均数变为+100,则每个数都加了100,原来的方差s12=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,现在的方差s22=[(x1+100﹣﹣100)2+(x2+100﹣﹣100)2+…+(xn+100﹣﹣100)2]=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,方差不变.故选:A.【题目点拨】方差的计算公式:s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]3、D【解题分析】

根据函数的定义即可判断.【题目详解】因为是的函数时,只能一个x对应一个y值,故D错误.【题目点拨】此题主要考查函数的定义,解题的关键是熟知函数图像的性质.4、A【解题分析】

根据题意得,▱ABCD∽▱OECF,且AO=OC=AC,故四边形OECF的面积是▱ABCD面积的.【题目详解】由平移的性质得,▱ABCD∽▱OECF,且AO=OC=AC,故四边形OECF的面积是▱ABCD面积的.,即图中阴影部分的面积为1cm1.故选A.【题目点拨】此题主要考查学生对菱形的性质及平移的性质的综合运用.关键是得出四边形OECF的面积是▱ABCD面积的.5、D【解题分析】试题分析:根据勾股定理可求得AB=10,然后根据三角形的面积可得,解得CD=4.8.故选:D6、D【解题分析】

确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【题目详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【题目点拨】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.7、C【解题分析】

对菱形对角线相互垂直平分,矩形对角线平分相等,正方形对角线相互垂直平分相等的性质进行分析从而得到其共有的性质.【题目详解】解:A、不正确,菱形的对角线不相等;B、不正确,菱形的对角线不相等,矩形的对角线不垂直;C、正确,三者均具有此性质;D、不正确,矩形的四边不相等,菱形的四个角不相等;故选C.8、C【解题分析】

由镶嵌的条件知,在一个顶点处各个内角和为360°.【题目详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【题目点拨】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.9、B【解题分析】

通过一次函数的定义即可解答.【题目详解】解:已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,故k>0,即一次函数y=x+k的图象过一二三象限,答案选B.【题目点拨】本题考查一次函数的定义与性质,熟悉掌握是解题关键.10、B【解题分析】

先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【题目详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B.【题目点拨】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.二、填空题(每小题3分,共24分)11、【解题分析】

直接利用二次根式的性质化简求出答案.【题目详解】.故答案为.【题目点拨】本题考查了二次根式的性质与化简,正确开平方是解题的关键.12、2【解题分析】

各小长方形的高的比为3:3:2:3,就是各组频率的比,也是频数的比,根据一组数据中,各组的频率和等于3;各组的频数和等于总数,即可求解.【题目详解】∵各小长方形的高的比为3:3:2:3,∴第二小组的频率=3÷(3+3+2+3)=0.3.∵有80个数据,∴第二小组的频数=80×0.3=2.故答案为:2.【题目点拨】本题是对频率、频数意义的综合考查.注意:各小组频数之和等于数据总和,各小组频率之和等于3.13、【解题分析】

两边都乘以x(x-1),化为整式方程求解,然后检验.【题目详解】原式通分得:去分母得:去括号解得,经检验,为原分式方程的解故答案为【题目点拨】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.14、P(5,5)或(4,5)或(8,5)【解题分析】试题解析:由题意,当△ODP是腰长为4的等腰三角形时,有三种情况:(5)如图所示,PD=OD=4,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD-DE=4-5=4,∴此时点P坐标为(4,5);(4)如图所示,OP=OD=4.过点P作PE⊥x轴于点E,则PE=5.在Rt△POE中,由勾股定理得:OE=,∴此时点P坐标为(5,5);(5)如图所示,PD=OD=4,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD+DE=4+5=8,∴此时点P坐标为(8,5).综上所述,点P的坐标为:(4,5)或(5,5)或(8,5).考点:5.矩形的性质;4.坐标与图形性质;5.等腰三角形的性质;5.勾股定理.15、2【解题分析】

将点A(2,3)代入一次函数y=kx+b中即可求解.【题目详解】∵一次函数y=kx+b(k,b是常数,k≠0)的图象经过点A(2,3),

∴2k+b=3,

∵kx+b=3,

∴x=2

故答案是:2【题目点拨】考查的是一次函数图象上点的坐标特征,掌握图象上的点一定满足对应的函数解析式是解答此题的关键.16、1【解题分析】

由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【题目详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和=(6-2)×180°=1°,故答案是:1.【题目点拨】本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.17、【解题分析】

根据一元一次方程无解,则m+1=0,即可解答.【题目详解】解:∵关于的方程无解,∴m+1=0,∴m=−1,故答案为m=−1.【题目点拨】本题考查了一元一次方程的解,根据题意得出关于m的方程是解题关键.18、9【解题分析】试题分析:∵等腰三角形的两边长分别为4和9,∴分两种情况(1)腰为4,底边为9,但是4+4<9,所以不能组成三角形(2))腰为9,底边为4,符合题意,所以第三边长为9.考点:等腰三角形的概念及性质.三、解答题(共66分)19、(1)n=1,m=2;(2)2;(3)当y1<y2时,x>1.【解题分析】

(1)利用待定系数法把点坐标代入可算出的值,然后再把点坐标代入可算出的值;(2)首先根据函数解析式计算出两点坐标,然后再根据三点坐标求出的面积;(3)根据点坐标,结合一次函数与不等式的关系可得出答案.【题目详解】解:(1)∵点C(1,n)在直线y1=-2x+3上,∴n=-2×1+3=1,∴C(1,1),∵y2=mx-1过点C(1,1),∴1=m-1,解得m=2.(2)当x=0时,y1=-2x+3=3,则A(0,3),当x=0时,y2=2x-1=-1,则B(0,-1),∴ΔABC的面积为×4×1=2.(3)∵C(1,1),∴当y1<y2时,x>1.【题目点拨】此题主要考查了两函数图象相交问题,以及一次函数与不等式的关系,关键是认真分析图象,能从图象中得到正确信息.20、;(2)数量关系还成立.证明见解析.【解题分析】

(1)由题意可证△ABM≌△ADN,可得AM=AN,∠BAM=∠DAN=22.5°,再证△ABM≌△AMH可得结论;(2)延长CB至E,使BE=DN,可证△ABE≌△ADN,可得AN=AE,∠BAE=∠DAN,可得∠EAM=∠MAN=45°且AM=AM,AE=AN,可证△AME≌△AMN,则结论可证.【题目详解】,理由如下:是正方形,且,≌,,,,,,,,,且,,≌,;数量关系还成立.如图,延长CB至E,使,,,,≌,,,,即,且,,≌,,≌,,.【题目点拨】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确添加辅助线构建全等三角形是解题的关键.21、(1)y=-0.5x+1,y=;(1)-1<x<0或x>4.【解题分析】

(1)先把C点坐标代入反比例函数求出m,再根据D坐标的横坐标为-1求出D点坐标,再把C,D坐标代入一次函数求出k,b的值;(1)根据C,D两点的横坐标,结合图像即可求解.【题目详解】(1)把C(4,-1)代入反比例函数,得m=4×(-1)=-4,∴y=;设D(-1,y),代入y=得y=-1,∴D(-1,1)把C(4,-1),D(-1,1)代入一次函数得解得k=-0.5,b=1∴y=-0.5x+1(1)∵C,D两点的横坐标分别为4,-1,由图像可知当-1<x<0或x>4,一次函数的值小于反比例函数的值.【题目点拨】此题主要考查反比例函数与一次函数,解题的关键是熟知待定系数法确定函数关系式.22、(1)矩形EFGH的面积为S=-x2+x(0<x<1);(2)S=.【解题分析】

(1)连接BD交EF于点M,根据菱形的性质得出AB=AD,BD⊥EF,求出△AEH是等边三角形,根据等边三角形的性质得出∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,求出EM=BE,即可求出答案;(2)根据正方形的性质求出x,再求出面积即可.【题目详解】(1)连接BD交EF于点M,∵四边形ABCD是菱形,∴AB=AD,∵AE=AH,∴EH∥BD∥FG,BD⊥EF,∵在菱形ABCD中,∠A=60°,AE=AH,∴△AEH是等边三角形,∴∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,∴EM=BE,∴EF=BE,∵AB=1,AE=x,∴矩形EFGH的面积为S=EH×EF=x×(1-x)=-x2+x(0<x<1);(2)当矩形EFGH是正方形时,EH=EF,即x=(1-x),解得:x=,所以S=x2=()2=.【题目点拨】考查了矩形的性质,菱形的性质,等边三角形的性质和判定,二次函数的解析式,正方形的性质,解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.23、(1)当时,,当时,,;(2)点的坐标为,见解析;(3)当每月主叫时间小于130分钟时选择方式二省钱;当每月主叫时间等于130分钟时两种方式都一样;当每月主叫时间大于130分钟时选择方式一省钱.【解题分析】

(1)根据题意即可写出两种资费的关系式;(2)根据列表、描点、连线即可画出函数图像,再求出交点坐标A;(3)根据函数图像的性质即可求解.【题目详解】解:(1)方式一:当时,,当时,;方式二:;或解:(1)方式一:化简,得;方式二:;(2)点的坐标为(3)由图象可得,当每月主叫时间小于130分钟时选择方式二省钱;当每月主叫时间等于130分钟时两种方式都一样;当每月主叫时间大于130分钟时选择方式一省钱。【题目点拨】此题主要考查一次函数的应用,解题的关键是根据题意写出函数关系式.24、(1)240;(2)(12,2400);(1)s=240t;(4)李越,1【解题分析】

(1)由函数图象中的数据可以直接计算出李越骑车的速度;(2)根据题意和图象中点A的坐标可以直接写出点B的坐标;(1)根据函数图象中的数据和待定系数法,可得s与t的函数表达式;(4)根据函数图象可以得到谁先到达乙地,并求出先到几分钟.【题目详解】(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,故答案为:240;(2)由题意可得,10+2=12(分钟),点B的坐标为(12,2400),故答案为:(12,2400);(1)设李越从乙地骑往甲地时,s与t之间的函数表达式为:s=kt,由题意得:2400=10k,得:k=240,即李越从乙地骑往甲地时,s与t之间的函数表达式为:s=240t,故答案为:s=240t;(4)由图象可知,李越先到达乙地,先到达:2400÷96-(10×2+2)=1(分钟),故答案为:李越,1.【题目点拨】本题主要考查一次函数的实际应用,掌握一次函数的图象和性质,并利用数形结合的思想,是解题的关键.25、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.【解题分析】

(1)由勾股定理得出AB=,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可.(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PHYN,如图4所示,②当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.【题目详解】(1)∵∠ACB=90°,AC=8,BC=1,∴AB=,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即:8×1=10×CD,∴CD=;(2)在Rt△ADC中,AD=,BD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论