2024届北京市房山区九级数学八年级第二学期期末监测试题含解析_第1页
2024届北京市房山区九级数学八年级第二学期期末监测试题含解析_第2页
2024届北京市房山区九级数学八年级第二学期期末监测试题含解析_第3页
2024届北京市房山区九级数学八年级第二学期期末监测试题含解析_第4页
2024届北京市房山区九级数学八年级第二学期期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市房山区九级数学八年级第二学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是()A.100° B.120° C.130° D.150°2.若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形 B.八边形 C.九边形 D.十边形3.下列函数中,自变量x的取值范围是x≥3的是()A. B. C. D.4.如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE∥BC交AB于点E,若△AED的周长为16,则边AB的长为()A.6 B.8 C.10 D.125.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是()A. B. C. D.6.若分式有意义,则的值是()A. B. C. D.7.下列说法中,正确的是A.相等的角是对顶角 B.有公共点并且相等的角是对顶角C.如果∠1和∠2是对顶角,那么∠1=∠2 D.两条直线相交所成的角是对顶角8.分式:①;②;③;④中,最简分式的个数有()A.1个 B.2个 C.3个 D.4个9.如图,已知▱ABCD的周长为20,∠ADC的平分线DE交AB于点E,若AD=4,则BE的长为()A.1 B.1.5 C.2 D.310.如图,在▱ABCD中,对角线AC、BD交于点O,下列式子中不一定成立的是()A.AB∥CD B.OA=OC C.∠ABC+∠BCD=180° D.AB=BC11.平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为()A.6cm B.3cm C.9cm D.12cm12.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5二、填空题(每题4分,共24分)13.要使分式的值为1,则x应满足的条件是_____14.已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.15.使有意义的的取值范围是______.16.某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:年龄组12岁13岁14岁15岁参赛人数5191313则全体参赛选手年龄的中位数是________.17.已知关于x的不等式3x-m+1>0的最小整数解为2,则实数m的取值范围是___________.18.已知直角三角形中,分别以为边作三个正方形,其面积分别为,则__________(填“”,“”或“”)三、解答题(共78分)19.(8分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.(1)求点的坐标,并求当时点的坐标;(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.20.(8分)某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.21.(8分)某公司把一批货物运往外地,有两种运输方案可供选择.方案一:使用快递公司的邮车运输,装卸收费400元,另外每千米再回收4元;方案二:使用快递公司的火车运输,装卸收费820元,另外每千米再回收2元.(1)分别求邮车、火车运输总费用y1(元)、y2(元)关于运输路程x(km)之间的函数关系式:(2)如何选择运输方案,运输总费用比较节省?22.(10分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.23.(10分)如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。(1)阅读下面的解答过程。并按此思路完成余下的证明过程当点E在线段BC上,且点E为BC中点时,AB=EF理由如下:取AB中点P,達接PE在正方形ABCD中,∠B=∠BCD=90°,AB=BC∴△BPE等腰三角形,AP=BC∴∠BPB=45°∴∠APBE=135°又因为CH平分∠DCN∴∠DCF=45°∴∠ECF=135°∴∠APE=∠ECF余下正明过程是:(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。24.(10分)因式分解(1)a4-16a2(2)4x2+8x+425.(12分)某校八年级数学实践能力考试选择项目中,选择数据收集项目和数据分析项目的学生比较多。为了解学生数据收集和数据分析的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择数据收集和数据分析的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:数据收集109.59.510899.5971045.5107.99.510数据分析9.598.58.5109.510869.5109.598.59.56整理,描述数据:按如下分数段整理,描述这两组样本数据:10数据收集11365数据分析(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据:两组样本数据的平均数,中位数,众数如下表所示:项目平均数中位数众数数据收集8.759.510数据分析8.819.259.5得出结论:(1)如果全校有480人选择数据收集项目,达到优秀的人数约为________人;(2)初二年级的井航和凯舟看到上面数据后,井航说:数据分析项目整体水平较高.凯舟说:数据收集项目整体水平较高.你同意________的看法,理由为_______________________.(至少从两个不同的角度说明推断的合理性)26.如图,在平面直角坐标系中,以原点为位似中心,将放大到原来的倍后得到,其中、在图中格点上,点、的对应点分别为、。(1)在第一象限内画出;(2)若的面积为3.5,求的面积。

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据三角形中位线定理得到PE=AD,PF=BC,根据等腰三角形的性质、三角形内角和定理计算即可.【题目详解】解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,

∴PE=AD,PF=BC,

∵AD=BC,

∴PE=PF,

∴∠PFE=∠PEF=25°,

∴∠EPF=130°,

故选:C.【题目点拨】本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.2、C【解题分析】

根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【题目详解】360÷40=9,即这个多边形的边数是9,故选C.【题目点拨】本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.3、D【解题分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使各函数在实数范围内有意义,必须:A、分式有意义,x﹣1≠0,解得:x≠1;B、二次根式和分式有意义,x﹣1>0,解得x>1;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣1≥0,解得x≥1.故选D.4、C【解题分析】

根据角平分线的定义得到∠EBD=∠CBD,根据平行线的性质得到∠EDB=∠CBD,等量代换得到∠EBD=∠EDB,求得BE=DE,于是得到结论.【题目详解】解:∵BD平分∠ABC,∴∠EBD=∠CBD,∵DE∥BC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴BE=DE,∵△AED的周长为16,∴AB+AD=16,∵AD=6,∴AB=10,故选:C.【题目点拨】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定和性质,熟练掌握各定理是解题的关键.5、A【解题分析】

根据菱形的判定方法一一判定即可【题目详解】作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意故选A【题目点拨】本题考查平行四边形的判定,能理解每个图的作法是本题解题关键6、D【解题分析】

根据分式有意义的条件可得x+1≠0求解即可.【题目详解】解:当x+1≠0时分式有意义解得:故选D.【题目点拨】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.7、C【解题分析】

本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.【题目详解】A、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;

B、对顶角应该是有公共顶点,且两边互为反向延长线,错误;

C、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.

D、两条直线相交所成的角有对顶角、邻补角,错误;

故选C.【题目点拨】要根据对顶角的定义来判断,这是需要熟记的内容.8、B【解题分析】

最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【题目详解】解:①④中分子分母没有公因式,是最简分式;②中有公因式(a﹣b);③中有公约数4;故①和④是最简分式.故选:B【题目点拨】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.9、C【解题分析】

只要证明AD=AE=4,AB=CD=6即可解决问题.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=4,AB=CD=6,∴∠AED=∠CDE,∵DE平分∠ADC,∴∠ADE=∠EDC,∴∠ADE=∠AED,∴AD=AE=4,∴EB=AB﹣AE=6﹣4=1.故选:C.【题目点拨】此题考查了平行四边形的性质,等腰三角形的判定等知识,熟练掌握平行四边形的性质是解本题的关键.10、D【解题分析】

根据平行四边形的性质分析即可.【题目详解】解:由平行四边形的性质可知:平行四边形对边平行,故A一定成立,不符合题意;平行四边形的对角线互相平分;故B一定成立,不符合题意;平行四边形对边平行,所以邻角互补,故C一定成立,不符合题意;平行四边形的邻边不一定相等,只有为菱形或正方形时才相等,故D不一定成立,符合题意.

故选:D.【题目点拨】本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解决问题的关键.11、B【解题分析】

设平行四边形较短的边长为x,根据平行四边形的性质和已知条件列出方程求解即可【题目详解】解:设平行四边形较短的边长为x,∵相邻两边长的比为3:1,∴相邻两边长分别为3x、x,∴2x+6x=24,即x=3cm,故选B.【题目点拨】本题主要考查平行四边形的性质,根据性质,设出未知数,列出方程是解题的关键.12、C【解题分析】

连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【题目详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【题目点拨】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.二、填空题(每题4分,共24分)13、x=-1.【解题分析】

根据题意列出方程即可求出答案.【题目详解】由题意可知:=1,∴x=-1,经检验,x=-1是原方程的解.故答案为:x=-1.【题目点拨】本题考查解分式方程,注意,别忘记检验,本题属于基础题型.14、(1,0)【解题分析】试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标试题解析:∵方程组的解为,∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).考点:一次函数与二元一次方程(组).15、【解题分析】

根据二次根式的被开方数是非负数和分式的分母不等于零进行解答.【题目详解】解:依题意得:且x-1≠0,解得.故答案为:.【题目点拨】本题考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.16、1【解题分析】

根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.【题目详解】解:本次比赛一共有:5+19+13+13=50人,∴中位数是第25和第26人的年龄的平均数,∵第25人和第26人的年龄均为1岁,∴全体参赛选手的年龄的中位数为1岁.故答案为1.【题目点拨】中位数的定义是本题的考点,熟练掌握其概念是解题的关键.17、【解题分析】

先用含m的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m的取值范围.【题目详解】∵3x-m+1>0,∴3x>m-1,∴x>,∵不等式3x-m+1>0的最小整数解为2,∴1≤<3,解之得.故答案为:.【题目点拨】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m的不等式是解答本题的关键.18、【解题分析】

由勾股定理得出AC2+BC2=AB2,得出S1+S2=S3,可得出结果.【题目详解】解:∵∠ACB=90°,

∴AC2+BC2=AB2,

∴S1+S2=S3,故答案为:=.【题目点拨】本题考查了勾股定理、正方形面积的计算;熟练掌握勾股定理,由勾股定理得出正方形的面积关系是解决问题的关键.三、解答题(共78分)19、(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【解题分析】

(1)利用待定系数法求出A,B两点坐标,再构建方程即可解决问题.

(2)分两种情形:①如图1,当点F在直线上时,过点D作DG⊥x轴于点G,过点F作FH⊥x轴于点H,②如图2,当点E在直线上时,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,过点D作DM⊥EH于点M,分别求解即可解决问题.

(3)由(2)①可知:点F的坐标F(2m-7,m+3),令x=2m-7,y=m+3,消去m即可得到.【题目详解】解:(1)令,则,解得,,,易得,由得,,解得,由解得或2.8,∴D(1.2,1.6)或(2.8,-1.6).(2)①如图1,当点在直线上时,过点作轴于点,过点作轴于点,图1设,易证,,则,,,得,;②如图2,当点在直线上时,过点作轴于点,过点作轴于点,图2过点作于点,同①可得,,则,,,得,;(3)设D(m,-2m+4),由(2)①可知:F(2m-7,m+3),

令x=2m-7,y=m+3,消去m得到:点在直线上运动.故答案为:(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.【题目点拨】本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.20、1元【解题分析】

首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.【题目详解】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:,解方程,得x=1.经检验:x=1是原方程的根,且符合题意.答:跳绳的单价是1元.【题目点拨】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.21、(1)y1=4x+400,y2=2x+820;(2)当运输路程x不超过210千米时,使用方式一最节省费用;当运输路程x超过210千米时,使用方式二最节省费用;当运输路程x等于210千米时,使用两种方式的费用相同.【解题分析】

(1)根据运输总费用=装卸费用+加收的费用列式整理即可;(2)分y1=y2、y1>y2、y1<y2三种情况讨论求解.【题目详解】(1)y1=4x+400,y2=2x+820;(2)①当y1>y2时,4x+400>2x+820,x>210,②当y1<y2时,4x+400<2x+820,x<210,③当y1=y2时,4x+400=2x+820,x=210,答:当运输路程x不超过210千米时,使用方式一最节省费用;当运输路程x超过210千米时,使用方式二最节省费用;当运输路程x等于210千米时,使用两种方式的费用相同.【题目点拨】考查了一次函数的应用,理解两种运输方式的收费组成是解题的关键,(2)要注意分情况讨论.22、证明见解析.【解题分析】【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.【题目详解】∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA),∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.【题目点拨】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.23、(1)见解析;(2)成立,理由见解析;(3)成立,图形见解析【解题分析】

(1)取AB中点P,连接PE,得出∠APE=∠ECF,再根据同角的余角相等得出∠BAE=∠CEF,进而得出ΔAPE≌ΔECF,求出结果;(2)在AB上截取BN=BE,类比(1)的证明方法即可得出结果;(3)在BA延长线上取一点Q,使BQ=BE,连接EQ,类比(1)的证明方法即可得出结果.【题目详解】(1)余下证明过程为:∵∠ABE=90°∴∠BAE+∠AEB=90°∵∠AEF=90°∴∠BAE=∠CEF∴ΔAPE≌ΔECF∴AE=EF.(2)成立证明:在AB上截取BN=BE在正方形ABCD中,∠B=∠BCD=90°,AB=BC∴ΔBNE为等腰三角形,AN=EC∴∠BNE=45°∴∠ANE=135°又因为GH平分∠DCN∴∠DCF=45°∴∠ECF=135°∴∠ANE=∠ECF由(1)得∠BAE+∠AEB=90°,∠AEB+∠CEF=90°∴∠BAE=∠CEF∴ΔANE≌ΔECF∴AE=EF(3)如图证明:在BA延长线上取一点Q,使BQ=BE,连接EQ,

在正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论