![2024届新疆维吾尔自治区阿克苏地区沙雅县八年级数学第二学期期末经典试题含解析_第1页](http://file4.renrendoc.com/view10/M00/32/24/wKhkGWXSKf-AVolnAAHg7_S1U70920.jpg)
![2024届新疆维吾尔自治区阿克苏地区沙雅县八年级数学第二学期期末经典试题含解析_第2页](http://file4.renrendoc.com/view10/M00/32/24/wKhkGWXSKf-AVolnAAHg7_S1U709202.jpg)
![2024届新疆维吾尔自治区阿克苏地区沙雅县八年级数学第二学期期末经典试题含解析_第3页](http://file4.renrendoc.com/view10/M00/32/24/wKhkGWXSKf-AVolnAAHg7_S1U709203.jpg)
![2024届新疆维吾尔自治区阿克苏地区沙雅县八年级数学第二学期期末经典试题含解析_第4页](http://file4.renrendoc.com/view10/M00/32/24/wKhkGWXSKf-AVolnAAHg7_S1U709204.jpg)
![2024届新疆维吾尔自治区阿克苏地区沙雅县八年级数学第二学期期末经典试题含解析_第5页](http://file4.renrendoc.com/view10/M00/32/24/wKhkGWXSKf-AVolnAAHg7_S1U709205.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆维吾尔自治区阿克苏地区沙雅县八年级数学第二学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,点E,F分别是边BC上两点,ED垂直平分AB,FG垂直平分AC,连接AE,AF,若∠BAC=115°,则∠EAF的大小为()A.45° B.50° C.60° D.65°2.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1) B.(1,﹣) C.(,﹣) D.(﹣,)3.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1 B. C. D.24.分别顺次连接①平行四边形②矩形③菱形④对角线相等的四边形,各边中点所构成的四边形中,为菱形的是()A.②④ B.①②③ C.② D.①④5.我校开展了主题为“青春·梦想”的艺术作品征集活动、从八年级某六个班中收集到的作品数量(单位:件)统计如图,则这组数据的众数、中位数、平均数依次是()A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.56.估计﹣÷2的运算结果在哪两个整数之间()A.0和1 B.1和2 C.2和3 D.3和47.若关于x的一元二次方程(x-a)2=4,有一个根为1,则a的值是().A.3B.1C.-1D.-1或38.若n为任意整数,(n+11)2-n2的值总可以被k整除,则k等于()A.11B.22C.11或22D.11的倍数9.一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四 C.一、二、四 D.一、三、四10.如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为_____.12.的化简结果为________13.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由、、三种饼干搭配而成,每袋礼包的成本均为、、三种饼干成本之和.每袋甲类礼包有5包种饼干、2包种饼干、8包种饼干;每袋丙类礼包有7包种饼干、1包种饼干、4包种饼干.已知甲每袋成本是该袋中种饼干成本的3倍,利润率为,每袋乙的成本是其售价的,利润是每袋甲利润的;每袋丙礼包利润率为.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为,则当天该网店销售总利润率为__________.14.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题15.若△ABC∽△DEF,△ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为________.16.如图,点D是等边内部一点,,,.则的度数为=________°.17.试写出经过点,的一个一次函数表达式:________.18.如图,已知一次函数与y=2x+m的图象相交于,则关于的不等式的解集是__.三、解答题(共66分)19.(10分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆,设租用甲种客车x辆.(1)用含x的式子填写下表:车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车___________________________(2)给出最节省费用的租车方案,并求出最低费用.20.(6分)解方程:(1);(2);(3);(4).21.(6分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G.F为AB边上一点,连接CF,且∠ACF=∠CBG.(1)求证:BG=CF;(2)求证:CF=2DE;(3)若DE=1,求AD的长22.(8分)解方程:.23.(8分)某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元?(2)为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?24.(8分)计算:+25.(10分)某商场购进一批运动服,销售时标价为每件100元,若按七折销售则可获利40%.为尽快减少库存,现该商场决定对这批运动服开展降价促销活动,每件在七折的基础上再降价x元后,现在每天可销售(4x+10)件.(1)运动服的进价是每件______元;(2)促销期间,每天若要获得500元的利润,则x的值为多少?26.(10分)解不等式组,并将它的解集在数轴上表示出来.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据三角形内角和定理得到∠B+∠C=65°,根据线段垂直平分线的性质得到EA=EB,FA=FC,根据等腰三角形的性质得到∠EAB=∠B,∠FAC=∠C,结合图形计算即可.【题目详解】解:∵∠BAC=115°,∴∠B+∠C=180°-115°=65°,∵ED垂直平分AB,FG垂直平分AC,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C,∴∠EAB+∠FAC=∠B+∠C=65°,∴∠EAF=∠BAC-(∠EAB+∠FAC)=50°,故选:B.【题目点拨】本题考查的是线段的垂直平分线的性质、等腰三角形的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、C【解题分析】试题解析:∵三角板绕原点O顺时针旋转75°,
∴旋转后OA与y轴夹角为45°,
∵OA=2,
∴OA′=2,
∴点A′的横坐标为2×=,
纵坐标为-2×=-,
所以,点A′的坐标为(,-)故选C.3、C【解题分析】
直接利用频率的定义分析得出答案.【题目详解】∵“学习强国”的英语“Learningpower”中,一共有13个字母,n有2个,
∴字母“n”出现的频率是:故选:C.【题目点拨】此题主要考查了频率的求法,正确把握定义是解题关键.4、A【解题分析】
根据菱形的判定,有一组邻边相等的平行四边形是菱形,只要保证四边形的对角线相等即可.【题目详解】∵连接任意四边形的四边中点都是平行四边形,∴对角线相等的四边形有:②④,故选:A.【题目点拨】本题主要利用菱形的四条边都相等及连接任意四边形的四边中点都是平行四边形来解决.5、A【解题分析】
根据众数、中位数的定义和加权平均数公式分别进行解答即可.【题目详解】解:这组数据48出现的次数最多,出现了3次,则这组数据的众数是48;
把这组数据从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;
这组数据的平均数是:(47×2+48×3+50)÷6=48,
故选:A.【题目点拨】本题考查了众数、中位数和平均数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).6、D【解题分析】
先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.【题目详解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故选D.【题目点拨】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.7、D【解题分析】试题分析:由题意把代入方程,即可得到关于a的方程,再解出即可.由题意得,解得-1或3,故选D.考点:方程的根的定义,解一元二次方程点评:解题的关键是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.8、D【解题分析】试题分析:根据平方差公式分解因式即可判断。∵(n+11)2-n2=(n+11+n)(n+11-n)=11(2n+11),∴(n+11)2-n2的值总可以被11的倍数整除,故选D.考点:本题考查的是因式分解的简单应用点评:解答本题的关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b).9、C【解题分析】试题分析:直线y=﹣5x+3与y轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C.考点:一次函数的图象和性质.10、B【解题分析】
先证明Rt△BDE≌Rt△BCE(HL),得到点E是DC的中点,进而得出EF是△ADC的中位线,再根据已知数据即可得出EF的长度.【题目详解】解:∵,∴∠BED=∠BEC在Rt△BDE与Rt△BCE中∴Rt△BDE≌Rt△BCE(HL)∴DE=CE∴点E是CD的中点,又∵点F是AC的中点,∴EF是△ADC的中位线,∴∵,,,∴AD=AB-BC=4∴EF=2故答案为:B.【题目点拨】本题考查了全等三角形的证明及中位线的应用,解题的关键是得到EF是△ADC的中位线,并熟知中位线的性质.二、填空题(每小题3分,共24分)11、6【解题分析】
首先在Rt△ABC中,∠A=90°,AB=3,BC=5,根据勾股定理,求出AC=4,然后求出以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6,阴影部分的面积为2π+-(-6),即为6.【题目详解】解:∵在Rt△ABC中,∠A=90°,AB=3,BC=5,∴以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6阴影部分的面积为2π+-(-6),即为6.【题目点拨】此题主要考查勾股定理和圆面积公式的运用,熟练掌握,即可得解.12、【解题分析】
根据二次根式的乘法,化简二次根式即可.【题目详解】解:,故答案为:.【题目点拨】本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.13、25%【解题分析】
设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.【题目详解】解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:5x+2y+8z=15x,∴5x=y+4z,由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;∵每袋乙的成本是其售价的,利润是每袋甲利润,可知每袋乙礼包的利润是:4.5x×=2x,则乙礼包的售价为12x,成本为10x;由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x,∵每袋丙礼包利润率为:25%,∴丙礼包的售价为15x,成本为12x;∵甲、乙、丙三种礼包袋数之比为4:6:5,∴,∴总利润率是25%,故答案为:25%.【题目点拨】本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.14、19【解题分析】设他至少应选对x道题,则不选或错选为25−x道题.依题意得4x−2(25−x)⩾60得x⩾18又∵x应为正整数且不能超过25所以:他至少要答对19道题.故答案为19.15、1:1.【解题分析】
根据相似三角形的周长的比等于相似比得出.【题目详解】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:1,∴△ABC与△DEF的周长比为1:1.故答案为:1:1.【题目点拨】本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.16、1【解题分析】
将△BCD绕点B逆时针旋转60°得到△ABD',根据已知条件可以得到△BDD'是等边三角形,△ADD'是直角三角形,即可求解.【题目详解】将△BCD绕点B逆时针旋转60°得到△ABD',∴BD=BD',AD'=CD,∴∠DBD'=60°,∴△BDD'是等边三角形,∴∠BDD'=60°,∵BD=1,DC=2,AD=,∴DD'=1,AD'=2,在△ADD'中,AD'2=AD2+DD'2,∴∠ADD'=90°,∴∠ADB=60°+90°=1°,故答案为1.【题目点拨】本题考查旋转的性质,等边三角形和直角三角形的性质;能够通过图形的旋转构造等边三角形和直角三角形是解题的关键.17、y=x+1【解题分析】
根据一次函数解析式,可设y=kx+1,把点代入可求出k的值;【题目详解】因为函数的图象过点(1,2),所以可设这个一次函数的解析式y=kx+1,把(1,2)代入得:2=k+1,解得k=1,故解析式为y=x+1【题目点拨】此题考查一次函数解析式,解题的关键是设出解析式;18、x>-1【解题分析】
观察图象,找出直线y=-x+2在直线y=2x+m的下方时对应的x的取值范围即可.【题目详解】从图象可以看出,当时,直线y=-x+2在直线y=2x+m的下方,所以的解集为:x>-1,故答案为:.【题目点拨】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出的值是解答本题的关键.三、解答题(共66分)19、(1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元【解题分析】
(1)设租用甲种客车x辆,根据题意填表格即可.(2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x+2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.【题目详解】解:(1)车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车8﹣x30(8﹣x)280(8﹣x)(2)当租用甲种客车x辆时,设租车的总费用为y元,则:y=400x+280(8﹣x)=120x+2240,又∵45x+30(8﹣x)≥330,解得x≥6,在函数y=120x+2240中,∵120>0,∴y随x的增大而增大,∴当x=6时,y取得最小值,最小值为2960.答:最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元.【题目点拨】此题考查一元一次不等式的应用,一次函数的应用,解题关键在于利用不等式求取的范围解答即可.20、(1)x1=﹣3,x2=3;(2)x1=0,x2=﹣2;(3),;(4)x=﹣1【解题分析】
(1)利用因式分解法解方程;(2)利用因式分解法解方程;(3)利用配方法解方程;(4)去分母得到2(2x+1)=3(x﹣1),然后解整式方程后进行检验确定原方程的解.【题目详解】解:(1)(x+3)(x﹣3)=0,x+3=0或x﹣3=0,所以x1=﹣3,x2=3;(2)x(x+2)=0,x=0或x+2=0,所以x1=0,x2=﹣2;(3)x2﹣6x+9=8,(x﹣3)2=8,x﹣3=±2,所以,;(4)两边同时乘以(x﹣1)(2x+1),得2(2x+1)=3(x﹣1),解得x=﹣1,经检验,原方程的解为x=﹣1.【题目点拨】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了解分式方程.21、(1)详见解析;(2)详见解析;(3)【解题分析】
(1)利用“ASA”判断△BCG≌△CFA,从而得到BG=CF;(2)连结AG,利用等腰直角三角形的性质得CG垂直平分AB,则BG=AG,再证明∠D=∠GAD得到AG=DG,所以BG=DG,接着证明△ADE≌△CGE得到DE=GE,则BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;(3)先得到BG=2,GE=1,则BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x+(2x)=3,解得x=,所以BC=,AB=BC=,然后在Rt△ABD中利用勾股定理计算AD的长.【题目详解】(1)证明:∵∠ACB=90°,AC=BC,∴△ACB为等腰直角三角形,∴∠CAF=∠ACG=45°,∵CG平分∠ACB,∴∠BCG=45°,在△BCG和△CFA中,∴△BCG≌△CFA,∴BG=CF;(2)证明:连结AG,∵CG为等腰直角三角形ACB的顶角的平分线,∴CG垂直平分AB,∴BG=AG,∴∠GBA=∠GAB,∵AD⊥AB,∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,∴∠D=∠GAD,∴AG=DG,∴BG=DG,∵CG⊥AB,DA⊥AB,∴CG∥AD,∴∠DAE=∠GCE,∵E为AC边的中点,∴AE=CE,在△ADE和△CGE中,∴△ADE≌△CGE,∴DE=GE,∴DG=2DE,∴BG=2DE,∵△BCG≌△CFA,∴CF=BG,∴CF=2DE;(3)∵DE=1,∴BG=2,GE=1,即BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中,x+(2x)=3,解得x=,∴BC=,∴AB=BC=,在Rt△ABD中,∵BD=4,AB=,∴AD=.【题目点拨】此题考查全等三角形的判定与性质,等腰直角三角形,解题关键在于作辅助线22、【解题分析】
先移项,再两边平方,即可得出一个一元二次方程,求出方程的解,最后进行检验即可.【题目详解】解:移项得:,两边平方得:,整理得:,解得:,,经检验不是原方程的解,舍去,∴是原方程的解.【题目点拨】本题考查了解无理方程的应用,解此题的关键是能把无理方程转化成有理方程,注意:解无理方程一定要进行检验.23、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.【解题分析】
(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;
(2)设这所学校再次购买a个甲种足球,根据题意列出不等式解答即可.【题目详解】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意,可得:=2×,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,购买一个乙种足球需70元;(2)设这所学校再次购买a个甲种足球,(50-a)个乙种足球,根据题意,可得:50-a≥a,解得:a≤,∵a为整数,∴a≤1.设总花费为y元,由题意可得,y=50a+70(50-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭厨余垃圾简易生物降解系统
- 民房建筑施工合同
- 环保行业废弃物处理风险免责协议
- 智慧社区建设投资合作合同
- 2025年液压破碎锤项目发展计划
- Glycycoumarin-Standard-生命科学试剂-MCE
- 2025年纺织片梭织机项目建议书
- 网络安全技术培训服务合同书
- 1S-2S-2-PCCA-hydrochloride-生命科学试剂-MCE
- 2025年医用超声诊断设备合作协议书
- 中药材仓储标准化与信息化建设
- 阴囊常见疾病的超声诊断
- 2024届高考数学高考总复习:集合与常用逻辑用语集合的概念与运算
- DZ∕T 0051-2017 地质岩心钻机型式与规格系列(正式版)
- 《行业标准-太阳能光热发电技术监督导则》
- 压力管道穿(跨)越施工工艺规程2015
- 2型糖尿病性增殖性出血性视网膜病的护理查房
- 人工智能基础与应用-课程标准
- 业主授权租户安装充电桩委托书
- 书画同源 课件-2023-2024学年高中美术人教版(2019)选择性必修2 中国书画
- 全飞秒激光近视手术
评论
0/150
提交评论